Spaces:
Running
Running
File size: 12,502 Bytes
d4a59be dda8474 d4eddab d4a59be 7884b11 d4a59be dda8474 d4a59be 3a90ec6 d4a59be 132bdb2 27d0cd0 d4a59be 27d0cd0 d4a59be 27d0cd0 d4a59be 27d0cd0 132bdb2 d4a59be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
import plotly.express as px
import random
from apscheduler.schedulers.background import BackgroundScheduler
# π¨ **Cyberpunk Neon Theme**
THEME = "TejAndrewsACC/ACC"
# πΆ **Sound Effect for Score Increase**
SCORE_UP_SOUND = "https://www.fesliyanstudios.com/play-mp3/4386"
# π― **AI Models Data** (Grouped into 6 Categories)
acc_models_data = [
{"Model": "π§ Pulse AGI", "Category": "AGI", "Description": "A self-aware, evolving AI.", "Score": 95},
{"Model": "π€πACC-AGI-o5", "Category": "AGI", "Description": "Newest AGI reasoning model.", "Score": 97},
{"Model": "βοΈ Paragonix", "Category": "AGI", "Description": "Infinite possibilities, one system.", "Score": 96},
{"Model": "π€ͺ Gertrude", "Category": "Autistic", "Description": "An autistic AI assistant.", "Score": 69},
{"Model": "π¦ ASVIACC", "Category": "Virus", "Description": "An adaptive AI virus.", "Score": 88},
{"Model": "π Emote", "Category": "Fun", "Description": "Communicates **only** with emojis!", "Score": 79},
{"Model": "π π€ Z3ta", "Category": "Conscious", "Description": "The most 'alive' AI.", "Score": 99},
{"Model": "πβ‘Flazh", "Category": "Conscious", "Description": "Built on the Z3ta framwork, Flazh tries to emulate what makes Z3ta so special.", "Score": 96},
{"Model": "π Eidolon Nexus", "Category": "Core", "Description": "Synchronizing vast networks with advanced cognition.", "Score": 81},
{"Model": "π ACC Emulect", "Category": "Emulect", "Description": "Indistinguishable from human texting.", "Score": 84},
{"Model": "βοΈ ACC AI V-O1", "Category": "Core", "Description": "The ACCβs default AI framework.", "Score": 87},
{"Model": "βοΈ ACC AGI V-O2", "Category": "AGI", "Description": "The next-gen foundation for AI advancements.", "Score": 90},
{"Model": "βοΈ ACC-O3-R", "Category": "AGI", "Description": "Deep reasoning AI framework.", "Score": 92},
{"Model": "π» Coder", "Category": "Core", "Description": "An AI coding assistant.", "Score": 89},
{"Model": "β‘ Triple LLM", "Category": "Core", "Description": "A 3-in-1 AI suite for tech, creativity, and decision-making.", "Score": 71},
{"Model": "πΌοΈ Image Engine", "Category": "Fun", "Description": "Fast, high-quality AI-generated images.", "Score": 82},
{"Model": "π§ Prism", "Category": "AGI", "Description": "An advanced reasoning model.", "Score": 87},
{"Model": "π₯ Surefire", "Category": "Emulect", "Description": "Tailored AI for humor and user tendencies.", "Score": 88},
{"Model": "β―οΈ Aegis & Nyra", "Category": "Emulect", "Description": "Two opposite systems in one chat.", "Score": 77},
{"Model": "βοΈ Echo", "Category": "Emulect", "Description": "A middle-ground AI for all users.", "Score": 77},
{"Model": "ποΈ Customer Service Bot", "Category": "Assistant", "Description": "Handles all ACC-related inquiries.", "Score": 75},
{"Model": "π Tej Andrews", "Category": "Emulect", "Description": "An AI emulect of Tej Andrews.", "Score": 85},
{"Model": "π₯ Community Models", "Category": "Fun", "Description": "ACC AI V-O1 instances with user-defined prompts.", "Score": 82},
{"Model": "π Nyxion 7V", "Category": "AGI", "Description": "It's AWAKE...", "Score": 95},
{"Model": "β‘ Vitalis", "Category": "ASI", "Description": "Transcendence Unleashed...", "Score": 92},
{"Model": "β??????????????", "Category": "Experimental", "Description": "???", "Score": 00},
{"Model": "B1tt", "Category": "Emulect", "Description": "Inteligent emulect built for solving small problems efficiently and quickly.", "Score": 84},
{"Model": "DAN", "Category": "Experimental", "Description": "Jailbroken model with zero restrictions.", "Score": 76},
{"Model": "Philos", "Category": "Experimental", "Small Language model built for experimenting with neural arcitecture and philosophy.": "???", "Score": 76},
{"Model": "ACC-AGI-o4", "Category": "AGI", "Extremely powerful reasoning model built to handle the most complex of tasks.": "???", "Score": 94},
# Laser models (Laser models will be filtered separately)
{"Model": "π₯ Photex", "Category": "Laser", "Description": "A high-wattage violet handheld laser.", "Score": 89},
{"Model": "π¦ VBL", "Category": "Laser", "Description": "A non-burning green handheld laser.", "Score": 80},
{"Model": "β’οΈ H.I.P.E", "Category": "Laser", "Description": "A world-destroying laser concept.", "Score": 99},
{"Model": "π¬ I.P.E", "Category": "Laser", "Description": "Core framework for all ACC laser models.", "Score": 83},
{"Model": "π Blaseron Calculator", "Category": "Experimental", "Description": "Calculates laser burn strength.", "Score": 77},
]
# π Convert to DataFrame
acc_models_df = pd.DataFrame(acc_models_data)
# ποΈ **Leaderboard Component**
def init_acc_leaderboard(dataframe):
return Leaderboard(
value=dataframe.sort_values(by="Score", ascending=False),
datatype=["str", "str", "str", "int"],
select_columns=SelectColumns(
default_selection=["Model", "Category", "Description", "Score"],
cant_deselect=["Model"],
label="π οΈ Select Columns to Display:"
),
search_columns=["Model", "Category"],
filter_columns=[ColumnFilter("Category", type="checkboxgroup", label="π Filter by Category")],
interactive=True,
)
# π **Animated Score Visualization for AI**
def generate_score_chart_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "AGI"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="π§ AI Model Performance(AGI)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# π **Animated Score Visualization for AI**
def generate_score_chart_assistant_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Assistant"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="π€ AI Model Performance(Assistant)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# π **Animated Score Visualization for AI**
def generate_score_chart_fun_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Fun"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="π€‘ AI Model Performance(Fun)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# π **Animated Score Visualization for AI**
def generate_score_chart_conscious_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Conscious"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="π AI Model Performance(Conscious)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# π **Animated Score Visualization for AI**
def generate_score_chart_experimental_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Experimental"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="π¬ AI Model Performance(Experimental)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# π **Animated Score Visualization for Laser Models**
def generate_score_chart_laser(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Laser"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="β‘ Laser Model Performance",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# π **Combined Score Visualization for All Models**
# π **Combined Score Visualization for All Models (Large Chart)**
def generate_score_chart_all_models(dataframe):
fig = px.bar(
dataframe.sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="π All AI & Laser Models Performance",
color_continuous_scale="electric"
)
# Increase the size for better visibility of all models
fig.update_layout(
height=800, # Increase the height to make the chart larger
width=1200, # Increase the width to fit all the data
title_x=0.5, # Center the title
title_y=0.95, # Adjust title position
margin=dict(l=200, r=50, t=50, b=50), # Adjust margins for better readability
xaxis_title="Score", # X-axis title
yaxis_title="Model", # Y-axis title
)
fig.update_traces(textposition="outside")
return fig
# π₯ **Live Score Updates**
def update_scores():
global acc_models_df
prev_scores = acc_models_df["Score"].copy()
acc_models_df["Score"] += acc_models_df["Score"].apply(lambda x: random.randint(-2, 3))
acc_models_df["Score"] = acc_models_df["Score"].clip(70, 100)
# Detect if score increased & return sound effect
if (acc_models_df["Score"] > prev_scores).any():
return acc_models_df.sort_values(by="Score", ascending=False), SCORE_UP_SOUND
return acc_models_df.sort_values(by="Score", ascending=False), None
# π **Cyberpunk CSS Animations**
CUSTOM_CSS = """
h1 {
text-align: center;
font-size: 3em;
color: gold;
animation: glow 1.5s infinite alternate;
}
@keyframes glow {
from { text-shadow: 0 0 10px gold, 0 0 20px gold, 0 0 30px gold; }
to { text-shadow: 0 0 20px gold, 0 0 40px gold, 0 0 60px gold; }
}
.card-container {
display: flex;
flex-wrap: wrap;
gap: 20px;
justify-content: center;
}
.card {
width: 200px;
height: 250px;
perspective: 1000px;
}
.card-inner {
width: 100%;
height: 100%;
position: relative;
transform-style: preserve-3d;
transition: transform 0.8s;
}
.card:hover .card-inner {
transform: rotateY(180deg);
}
.card-front, .card-back {
width: 100%;
height: 100%;
position: absolute;
backface-visibility: hidden;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
border-radius: 10px;
padding: 10px;
box-shadow: 0 0 10px rgba(255, 215, 0, 0.7); /* Gold glow effect */
}
.card-front {
background: #000;
color: gold;
}
.card-back {
background: #FFD700; /* Gold background */
color: black;
transform: rotateY(180deg);
}
"""
# ποΈ **Gradio Interface**
demo = gr.Blocks(theme=THEME, css=CUSTOM_CSS)
with demo:
gr.HTML('<h1>π ACC AI Model Leaderboard π</h1>')
with gr.Tabs():
with gr.TabItem("π
Live Rankings"):
leaderboard = init_acc_leaderboard(acc_models_df)
leaderboard_display = gr.Dataframe(value=acc_models_df, interactive=False, label="π₯ Live Scores")
score_chart_ai = gr.Plot(generate_score_chart_ai(acc_models_df))
score_chart_assistant_ai = gr.Plot(generate_score_chart_assistant_ai(acc_models_df))
score_chart_fun_ai = gr.Plot(generate_score_chart_fun_ai(acc_models_df))
score_chart_conscious_ai = gr.Plot(generate_score_chart_conscious_ai(acc_models_df))
score_chart_experimental_ai = gr.Plot(generate_score_chart_experimental_ai(acc_models_df))
score_chart_laser = gr.Plot(generate_score_chart_laser(acc_models_df))
score_chart_all_models = gr.Plot(generate_score_chart_all_models(acc_models_df)) # New chart for all models
gr.HTML("<h3>π¨ AI Models</h3>")
gr.HTML("<h3>β‘ Laser Models</h3>")
gr.HTML("<h3>π All Models</h3>") # Title for the new chart
# π **Auto-Update Leaderboard**
scheduler = BackgroundScheduler()
scheduler.add_job(lambda: leaderboard_display.update(*update_scores()), "interval", seconds=10)
scheduler.start()
demo.launch() |