File size: 9,930 Bytes
be58ecd
 
50d6ab0
be58ecd
 
70739ed
 
 
 
be58ecd
2c0d348
4a97943
2c0d348
f31213f
2c0d348
 
 
f31213f
9432e38
be58ecd
b214153
 
 
 
 
 
f31213f
 
 
 
 
 
 
 
2d6564f
50d6ab0
2d6564f
 
 
 
f31213f
4a97943
f31213f
4a97943
 
be58ecd
4a97943
f31213f
853c736
 
9bbbd14
b214153
19dcfe5
 
b214153
 
2c0d348
f31213f
 
 
2c0d348
 
853c736
2c0d348
853c736
 
 
2c0d348
853c736
 
 
2c0d348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a97943
 
50d6ab0
 
 
4a97943
9bbbd14
50d6ab0
 
 
 
 
dc87ce4
50d6ab0
9bbbd14
 
 
2c0d348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a97943
2c0d348
2d6564f
 
 
 
 
 
 
 
 
 
 
2c0d348
 
19dcfe5
 
2c0d348
 
 
 
 
 
 
 
7363958
2c0d348
2d6564f
2c0d348
 
 
2d6564f
2c0d348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a97943
9bbbd14
 
 
0426d64
2c0d348
853c736
9bbbd14
 
 
2d6564f
9bbbd14
 
4a97943
2c0d348
4a97943
2d6564f
9bbbd14
 
4a97943
2c0d348
4a97943
2d6564f
9bbbd14
 
853c736
 
2c0d348
4a97943
2d6564f
9bbbd14
ae13ab7
9bbbd14
 
4a97943
19dcfe5
 
 
 
 
 
 
 
 
 
 
 
2c0d348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a97943
 
 
2c0d348
4a97943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c0d348
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import sys
import time
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))

# from streamlit_extras.bottom_container import bottom
# from streamlit_extras.app_logo import add_logo
# from streamlit_extras.add_vertical_space import add_vertical_space
# from streamlit_extras.stylable_container import stylable_container
import torch
from imports import *
import streamlit as st
from streamlit_option_menu import option_menu
import asyncio
import shutil
import gc
from transformers.utils.hub import TRANSFORMERS_CACHE

torch.classes.__path__ = [] 


try:
    asyncio.get_running_loop()
except RuntimeError:
    asyncio.run(asyncio.sleep(0))

if sys.platform == "win32":
    asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
else:
    try:
        asyncio.get_running_loop()
    except RuntimeError:
        asyncio.set_event_loop(asyncio.new_event_loop())

st.set_page_config(
    page_title="Tachygraphy Microtext Analysis & Normalization",
    layout="wide"
)



import joblib
import importlib
import importlib.util

# sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))


from emotionMoodtag_analysis.emotion_analysis_main import show_emotion_analysis
from sentimentPolarity_analysis.sentiment_analysis_main import show_sentiment_analysis
from transformation_and_Normalization.transformationNormalization_main import transform_and_normalize
from dashboard import show_dashboard
from stacked_stacking_stages.stacking_stages import show_stacking_stages
from data_collection_form.data_collector import show_data_collector


# from text_transformation import show_text_transformation



def free_memory():
    #  """Free up CPU & GPU memory before loading a new model."""
    # global current_model, current_tokenizer

    # if current_model is not None:
    #     del current_model  # Delete the existing model
    #     current_model = None  # Reset reference

    # if current_tokenizer is not None:
    #     del current_tokenizer  # Delete the tokenizer
    #     current_tokenizer = None

    gc.collect()  # Force garbage collection for CPU memory

    if torch.cuda.is_available():
        torch.cuda.empty_cache()  # Free GPU memory
        torch.cuda.ipc_collect()  # Clean up PyTorch GPU cache

    # If running on CPU, reclaim memory using OS-level commands
    try:
        if torch.cuda.is_available() is False:
            psutil.virtual_memory()  # Refresh memory stats
    except Exception as e:
        print(f"Memory cleanup error: {e}")

    # Delete cached Hugging Face models
    try:
        cache_dir = TRANSFORMERS_CACHE
        if os.path.exists(cache_dir):
            shutil.rmtree(cache_dir)
            print("Cache cleared!")
    except Exception as e:
        print(f"❌ Cache cleanup error: {e}")



if "last_run" not in st.session_state:
    st.session_state.last_run = time.time()

def main():

    if "last_run" not in st.session_state:
        st.session_state.last_run = time.time()

    if time.time() - st.session_state.last_run > 3600:
        st.session_state.clear()
        st.rerun()

    if "current_page" not in st.session_state:
        st.session_state.current_page = None

    # selection = option_menu(
    #     menu_title="Navigation",
    #     options=[
    #         "Dashboard",
    #         "Stage 1: Sentiment Polarity Analysis",
    #         "Stage 2: Emotion Mood-tag Analysis",
    #         "Stage 3: Text Transformation & Normalization"
    #     ],
    #     icons=["joystick", "bar-chart", "emoji-laughing", "pencil"],
    #     styles={
    #         "container": {}},
    #     menu_icon="menu-button-wide-fill",
    #     default_index=0,
    #     orientation="horizontal"
    # )

    st.sidebar.title("Navigation")
    with st.sidebar:

        # selected = option_menu("Main Menu", ["Home", 'Settings'], 
        #         icons=['house', 'gear'], menu_icon="cast", default_index=1)
        # selected

        # # 2. horizontal menu
        # selected2 = option_menu(None, ["Home", "Upload", "Tasks", 'Settings'], 
        #     icons=['house', 'cloud-upload', "list-task", 'gear'], 
        #     menu_icon="cast", default_index=0, orientation="horizontal")
        # selected2

        selection = option_menu(
            menu_title=None,          # No title for a sleek look
            options=["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization", "Stacked Stages", "Data Correction & Collection"],
            icons=['house', 'diagram-3', "snow", 'activity', 'collection', 'database-up'],
            menu_icon="cast",          # Main menu icon
            default_index=0,           # Highlight the first option
            orientation="vertical",
            styles={
                "container": {"padding": "0!important", "background-color": "#f8f9fa"},
                "icon": {"color": "#6c757d", "font-size": "18px"},
                "nav-link": {
                    "font-size": "16px",
                    "text-align": "left",
                    "margin": "0px",
                    "color": "#000000",
                    "transition": "0.3s",
                },
                "nav-link-selected": {
                    "background-color": "#020045",
                    "color": "white",
                    "font-weight": "bold",
                    "border-radius": "8px",
                },
            }
        )

    # st.sidebar.title("Navigation")
    # selection = st.sidebar.radio("Go to", ["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization"])

    # if selection == "Dashboard":
    #     show_dashboard()
    # elif selection == "Stage 1: Sentiment Polarity Analysis":
    #     show_sentiment_analysis()
    # elif selection == "Stage 2: Emotion Mood-tag Analysis":
    #     # show_emotion_analysis()
    #     st.write("This section is under development.")
    # elif selection == "Stage 3: Text Transformation & Normalization":
    #     # show_text_transformation()
    #     st.write("This section is under development.")



    if st.session_state.current_page != selection:
        st.cache_data.clear()
        st.cache_resource.clear()
        free_memory()
        st.session_state.current_page = selection

    if selection == "Dashboard":
        # st.title("Tachygraphy Micro-text Analysis & Normalization")
        # st.cache_resource.clear()
        # free_memory()
        show_dashboard()

    elif selection == "Stage 1: Sentiment Polarity Analysis":
        # st.title("Sentiment Polarity Analysis")
        # st.cache_resource.clear()
        # free_memory()
        show_sentiment_analysis()

    elif selection == "Stage 2: Emotion Mood-tag Analysis":
        # st.title("Emotion Mood-tag Analysis")
        # st.cache_resource.clear()
        # free_memory()
        show_emotion_analysis()
        # st.write("This section is under development.")

    elif selection == "Stage 3: Text Transformation & Normalization":
        # st.title("Text Transformation & Normalization")
        # st.cache_resource.clear()
        # free_memory()
        transform_and_normalize()
        # st.write("This section is under development.")

    elif selection == "Stacked Stages":
        # st.title("Stacked Stages")
        # st.cache_resource.clear()
        # free_memory()
        show_stacking_stages()
    
    elif selection == "Data Correction & Collection":
        # st.title("Data Correction & Collection")
        # st.cache_resource.clear()
        # free_memory()
        show_data_collector()



    # st.sidebar.title("Navigation")
    # selection = st.sidebar.radio("Go to", ["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization"])

    # if selection == "Dashboard":
    #     show_dashboard()
    # elif selection == "Stage 1: Sentiment Polarity Analysis":
    #     show_sentiment_analysis()
    # elif selection == "Stage 2: Emotion Mood-tag Analysis":
    #     # show_emotion_analysis()
    #     st.write("This section is under development.")
    # elif selection == "Stage 3: Text Transformation & Normalization":
    #     # show_text_transformation()
    #     st.write("This section is under development.")

    st.sidebar.title("About")
    st.sidebar.info("""

        **Contributors:**

        - Archisman Karmakar

            - [LinkedIn](https://www.linkedin.com/in/archismankarmakar/)

            - [GitHub](https://www.github.com/ArchismanKarmakar)

            - [Kaggle](https://www.kaggle.com/archismancoder)

        - Sumon Chatterjee

            - [LinkedIn](https://www.linkedin.com/in/sumon-chatterjee-3b3b43227)

            - [GitHub](https://github.com/Sumon670)

            - [Kaggle](https://www.kaggle.com/sumonchatterjee)



        **Mentors:**

        - Prof. Anupam Mondal

            - [LinkedIn](https://www.linkedin.com/in/anupam-mondal-ph-d-8a7a1a39/)

            - [Google Scholar](https://scholar.google.com/citations?user=ESRR9o4AAAAJ&hl=en)

            - [Website](https://sites.google.com/view/anupammondal/home)

        - Prof. Sainik Kumar Mahata

            - [LinkedIn](https://www.linkedin.com/in/mahatasainikk)

            - [Google Scholar](https://scholar.google.co.in/citations?user=OcJDM50AAAAJ&hl=en)

            - [Website](https://sites.google.com/view/sainik-kumar-mahata/home)



        This is our research project for our B.Tech final year and a journal which is yet to be published.

    """)

if __name__ == "__main__":
    main()