File size: 9,930 Bytes
be58ecd 50d6ab0 be58ecd 70739ed be58ecd 2c0d348 4a97943 2c0d348 f31213f 2c0d348 f31213f 9432e38 be58ecd b214153 f31213f 2d6564f 50d6ab0 2d6564f f31213f 4a97943 f31213f 4a97943 be58ecd 4a97943 f31213f 853c736 9bbbd14 b214153 19dcfe5 b214153 2c0d348 f31213f 2c0d348 853c736 2c0d348 853c736 2c0d348 853c736 2c0d348 4a97943 50d6ab0 4a97943 9bbbd14 50d6ab0 dc87ce4 50d6ab0 9bbbd14 2c0d348 4a97943 2c0d348 2d6564f 2c0d348 19dcfe5 2c0d348 7363958 2c0d348 2d6564f 2c0d348 2d6564f 2c0d348 4a97943 9bbbd14 0426d64 2c0d348 853c736 9bbbd14 2d6564f 9bbbd14 4a97943 2c0d348 4a97943 2d6564f 9bbbd14 4a97943 2c0d348 4a97943 2d6564f 9bbbd14 853c736 2c0d348 4a97943 2d6564f 9bbbd14 ae13ab7 9bbbd14 4a97943 19dcfe5 2c0d348 4a97943 2c0d348 4a97943 2c0d348 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
import sys
import time
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
# from streamlit_extras.bottom_container import bottom
# from streamlit_extras.app_logo import add_logo
# from streamlit_extras.add_vertical_space import add_vertical_space
# from streamlit_extras.stylable_container import stylable_container
import torch
from imports import *
import streamlit as st
from streamlit_option_menu import option_menu
import asyncio
import shutil
import gc
from transformers.utils.hub import TRANSFORMERS_CACHE
torch.classes.__path__ = []
try:
asyncio.get_running_loop()
except RuntimeError:
asyncio.run(asyncio.sleep(0))
if sys.platform == "win32":
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
else:
try:
asyncio.get_running_loop()
except RuntimeError:
asyncio.set_event_loop(asyncio.new_event_loop())
st.set_page_config(
page_title="Tachygraphy Microtext Analysis & Normalization",
layout="wide"
)
import joblib
import importlib
import importlib.util
# sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
from emotionMoodtag_analysis.emotion_analysis_main import show_emotion_analysis
from sentimentPolarity_analysis.sentiment_analysis_main import show_sentiment_analysis
from transformation_and_Normalization.transformationNormalization_main import transform_and_normalize
from dashboard import show_dashboard
from stacked_stacking_stages.stacking_stages import show_stacking_stages
from data_collection_form.data_collector import show_data_collector
# from text_transformation import show_text_transformation
def free_memory():
# """Free up CPU & GPU memory before loading a new model."""
# global current_model, current_tokenizer
# if current_model is not None:
# del current_model # Delete the existing model
# current_model = None # Reset reference
# if current_tokenizer is not None:
# del current_tokenizer # Delete the tokenizer
# current_tokenizer = None
gc.collect() # Force garbage collection for CPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache() # Free GPU memory
torch.cuda.ipc_collect() # Clean up PyTorch GPU cache
# If running on CPU, reclaim memory using OS-level commands
try:
if torch.cuda.is_available() is False:
psutil.virtual_memory() # Refresh memory stats
except Exception as e:
print(f"Memory cleanup error: {e}")
# Delete cached Hugging Face models
try:
cache_dir = TRANSFORMERS_CACHE
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir)
print("Cache cleared!")
except Exception as e:
print(f"❌ Cache cleanup error: {e}")
if "last_run" not in st.session_state:
st.session_state.last_run = time.time()
def main():
if "last_run" not in st.session_state:
st.session_state.last_run = time.time()
if time.time() - st.session_state.last_run > 3600:
st.session_state.clear()
st.rerun()
if "current_page" not in st.session_state:
st.session_state.current_page = None
# selection = option_menu(
# menu_title="Navigation",
# options=[
# "Dashboard",
# "Stage 1: Sentiment Polarity Analysis",
# "Stage 2: Emotion Mood-tag Analysis",
# "Stage 3: Text Transformation & Normalization"
# ],
# icons=["joystick", "bar-chart", "emoji-laughing", "pencil"],
# styles={
# "container": {}},
# menu_icon="menu-button-wide-fill",
# default_index=0,
# orientation="horizontal"
# )
st.sidebar.title("Navigation")
with st.sidebar:
# selected = option_menu("Main Menu", ["Home", 'Settings'],
# icons=['house', 'gear'], menu_icon="cast", default_index=1)
# selected
# # 2. horizontal menu
# selected2 = option_menu(None, ["Home", "Upload", "Tasks", 'Settings'],
# icons=['house', 'cloud-upload', "list-task", 'gear'],
# menu_icon="cast", default_index=0, orientation="horizontal")
# selected2
selection = option_menu(
menu_title=None, # No title for a sleek look
options=["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization", "Stacked Stages", "Data Correction & Collection"],
icons=['house', 'diagram-3', "snow", 'activity', 'collection', 'database-up'],
menu_icon="cast", # Main menu icon
default_index=0, # Highlight the first option
orientation="vertical",
styles={
"container": {"padding": "0!important", "background-color": "#f8f9fa"},
"icon": {"color": "#6c757d", "font-size": "18px"},
"nav-link": {
"font-size": "16px",
"text-align": "left",
"margin": "0px",
"color": "#000000",
"transition": "0.3s",
},
"nav-link-selected": {
"background-color": "#020045",
"color": "white",
"font-weight": "bold",
"border-radius": "8px",
},
}
)
# st.sidebar.title("Navigation")
# selection = st.sidebar.radio("Go to", ["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization"])
# if selection == "Dashboard":
# show_dashboard()
# elif selection == "Stage 1: Sentiment Polarity Analysis":
# show_sentiment_analysis()
# elif selection == "Stage 2: Emotion Mood-tag Analysis":
# # show_emotion_analysis()
# st.write("This section is under development.")
# elif selection == "Stage 3: Text Transformation & Normalization":
# # show_text_transformation()
# st.write("This section is under development.")
if st.session_state.current_page != selection:
st.cache_data.clear()
st.cache_resource.clear()
free_memory()
st.session_state.current_page = selection
if selection == "Dashboard":
# st.title("Tachygraphy Micro-text Analysis & Normalization")
# st.cache_resource.clear()
# free_memory()
show_dashboard()
elif selection == "Stage 1: Sentiment Polarity Analysis":
# st.title("Sentiment Polarity Analysis")
# st.cache_resource.clear()
# free_memory()
show_sentiment_analysis()
elif selection == "Stage 2: Emotion Mood-tag Analysis":
# st.title("Emotion Mood-tag Analysis")
# st.cache_resource.clear()
# free_memory()
show_emotion_analysis()
# st.write("This section is under development.")
elif selection == "Stage 3: Text Transformation & Normalization":
# st.title("Text Transformation & Normalization")
# st.cache_resource.clear()
# free_memory()
transform_and_normalize()
# st.write("This section is under development.")
elif selection == "Stacked Stages":
# st.title("Stacked Stages")
# st.cache_resource.clear()
# free_memory()
show_stacking_stages()
elif selection == "Data Correction & Collection":
# st.title("Data Correction & Collection")
# st.cache_resource.clear()
# free_memory()
show_data_collector()
# st.sidebar.title("Navigation")
# selection = st.sidebar.radio("Go to", ["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization"])
# if selection == "Dashboard":
# show_dashboard()
# elif selection == "Stage 1: Sentiment Polarity Analysis":
# show_sentiment_analysis()
# elif selection == "Stage 2: Emotion Mood-tag Analysis":
# # show_emotion_analysis()
# st.write("This section is under development.")
# elif selection == "Stage 3: Text Transformation & Normalization":
# # show_text_transformation()
# st.write("This section is under development.")
st.sidebar.title("About")
st.sidebar.info("""
**Contributors:**
- Archisman Karmakar
- [LinkedIn](https://www.linkedin.com/in/archismankarmakar/)
- [GitHub](https://www.github.com/ArchismanKarmakar)
- [Kaggle](https://www.kaggle.com/archismancoder)
- Sumon Chatterjee
- [LinkedIn](https://www.linkedin.com/in/sumon-chatterjee-3b3b43227)
- [GitHub](https://github.com/Sumon670)
- [Kaggle](https://www.kaggle.com/sumonchatterjee)
**Mentors:**
- Prof. Anupam Mondal
- [LinkedIn](https://www.linkedin.com/in/anupam-mondal-ph-d-8a7a1a39/)
- [Google Scholar](https://scholar.google.com/citations?user=ESRR9o4AAAAJ&hl=en)
- [Website](https://sites.google.com/view/anupammondal/home)
- Prof. Sainik Kumar Mahata
- [LinkedIn](https://www.linkedin.com/in/mahatasainikk)
- [Google Scholar](https://scholar.google.co.in/citations?user=OcJDM50AAAAJ&hl=en)
- [Website](https://sites.google.com/view/sainik-kumar-mahata/home)
This is our research project for our B.Tech final year and a journal which is yet to be published.
""")
if __name__ == "__main__":
main()
|