Sumon670 commited on
Commit
9432e38
·
1 Parent(s): c91521b

Addding lstm model

Browse files
app_main_hf.py CHANGED
@@ -15,7 +15,7 @@ import shutil
15
  import gc
16
  from transformers.utils.hub import TRANSFORMERS_CACHE
17
 
18
- torch.classes.__path__ = []
19
 
20
 
21
  try:
 
15
  import gc
16
  from transformers.utils.hub import TRANSFORMERS_CACHE
17
 
18
+ torch.classes.__path__ = []
19
 
20
 
21
  try:
sentiment_analysis/config/stage1_models.json CHANGED
@@ -43,5 +43,20 @@
43
  "device": "cpu",
44
  "load_function": "load_model",
45
  "predict_function": "predict"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  }
47
  }
 
43
  "device": "cpu",
44
  "load_function": "load_model",
45
  "predict_function": "predict"
46
+ },
47
+ "4": {
48
+ "name": "LSTM Custom Model",
49
+ "type": "lstm_uncased_custom",
50
+ "module_path": "hmv_cfg_base_stage1.model4",
51
+ "hf_location": "tachygraphy-microtrext-norm-org/LSTM-LV1-SentimentPolarities",
52
+ "tokenizer_class": "",
53
+ "model_class": "",
54
+ "problem_type": "multi_label_classification",
55
+ "base_model": "",
56
+ "base_model_class": "",
57
+ "num_labels": 3,
58
+ "device": "cpu",
59
+ "load_function": "load_model",
60
+ "predict_function": "predict"
61
  }
62
  }
sentiment_analysis/hmv_cfg_base_stage1/model4.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+
4
+ sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
5
+
6
+ from imports import *
7
+
8
+ import importlib.util
9
+ import os
10
+ import sys
11
+ import joblib
12
+
13
+ import torch
14
+ import torch.nn as nn
15
+ import torch.functional as F
16
+ from transformers import DebertaV2Model, DebertaV2Tokenizer, AutoModel, AutoTokenizer
17
+ import safetensors
18
+ # from safetensors import load_file, save_file
19
+ import json
20
+ from huggingface_hub import hf_hub_download
21
+ from safetensors.torch import save_file, safe_open
22
+
23
+
24
+ import pickle
25
+ import tensorflow as tf
26
+ # from tensorflow.keras.preprocessing.sequence import pad_sequences
27
+ # from keras.preprocessing.sequence import pad_sequences
28
+ # from keras_preprocessing.sequence import pad_sequences
29
+ # from tensorflow.keras.preprocessing.sequence import pad_sequences
30
+
31
+
32
+ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
33
+ CONFIG_STAGE1 = os.path.join(BASE_DIR, "..", "config", "stage1_models.json")
34
+
35
+ MODEL_OPTIONS = {
36
+ "4": {
37
+ "name": "LSTM Custom Model",
38
+ "type": "lstm_uncased_custom",
39
+ "module_path": "hmv_cfg_base_stage1.model4",
40
+ "hf_location": "tachygraphy-microtrext-norm-org/LSTM-LV1-SentimentPolarities",
41
+ "tokenizer_class": "",
42
+ "model_class": "",
43
+ "problem_type": "multi_label_classification",
44
+ "base_model": "",
45
+ "base_model_class": "",
46
+ "num_labels": 3,
47
+ "device": "cpu",
48
+ "load_function": "load_model",
49
+ "predict_function": "predict"
50
+ }
51
+ }
52
+
53
+
54
+ model_key = "4"
55
+ model_info = MODEL_OPTIONS[model_key]
56
+ hf_location = model_info["hf_location"]
57
+
58
+
59
+ @st.cache_resource
60
+ def load_model():
61
+ repo_id = hf_location
62
+ print("Loading model 4")
63
+ model_path = hf_hub_download(repo_id=repo_id, filename="lstm.h5")
64
+ tokenizer_path = hf_hub_download(repo_id=repo_id, filename="tokenizer.pickle")
65
+
66
+ lstm_model = tf.keras.models.load_model(model_path)
67
+
68
+ with open(tokenizer_path, "rb") as handle:
69
+ tokenizer = pickle.load(handle)
70
+ print("Model 4 loaded")
71
+
72
+ return lstm_model, tokenizer
73
+
74
+
75
+ def pad_sequences_custom(sequences, maxlen, dtype="int32", padding="pre", truncating="pre", value=0):
76
+ """
77
+ Pads each sequence to the same length (maxlen).
78
+
79
+ Args:
80
+ sequences (list of list of int): A list where each element is a sequence (list of integers).
81
+ maxlen (int): Maximum length of all sequences.
82
+ dtype (str): Data type of the output (default "int32").
83
+ padding (str): 'pre' or 'post'—whether to add padding before or after the sequence.
84
+ truncating (str): 'pre' or 'post'—whether to remove values from the beginning or end if sequence is too long.
85
+ value (int): The padding value.
86
+
87
+ Returns:
88
+ numpy.ndarray: 2D array of shape (number of sequences, maxlen)
89
+ """
90
+ # Initialize a numpy array with the pad value.
91
+ num_samples = len(sequences)
92
+ padded = np.full((num_samples, maxlen), value, dtype=dtype)
93
+
94
+ for i, seq in enumerate(sequences):
95
+ if not seq:
96
+ continue # skip empty sequences
97
+ if len(seq) > maxlen:
98
+ if truncating == "pre":
99
+ trunc = seq[-maxlen:]
100
+ elif truncating == "post":
101
+ trunc = seq[:maxlen]
102
+ else:
103
+ raise ValueError("Invalid truncating type: choose 'pre' or 'post'.")
104
+ else:
105
+ trunc = seq
106
+ if padding == "post":
107
+ padded[i, :len(trunc)] = trunc
108
+ elif padding == "pre":
109
+ padded[i, -len(trunc):] = trunc
110
+ else:
111
+ raise ValueError("Invalid padding type: choose 'pre' or 'post'.")
112
+
113
+ return padded
114
+
115
+ def predict(text, model, tokenizer, device, max_len=128):
116
+ # def predict(text, model, tokenizer, max_len=128):
117
+ # Convert text to a sequence of integers
118
+ sequences = tokenizer.texts_to_sequences([text])
119
+ # Pad the sequence using our custom padding function
120
+ padded_sequences = pad_sequences_custom(sequences, maxlen=max_len, dtype="int32", value=0)
121
+ # Get the model's output (logits); assume shape is (1, num_classes)
122
+ logits = model.predict(padded_sequences, batch_size=1, verbose=0)[0]
123
+ print(logits)
124
+ # Convert logits to probabilities using the exponential and normalize (softmax)
125
+ # exp_logits = np.exp(logits)
126
+ # probabilities = exp_logits / np.sum(exp_logits)
127
+
128
+ # Ensure the output is a 2D array: shape (1, 3)
129
+ probabilities = logits / logits.sum()
130
+ print(probabilities)
131
+ probabilities = np.atleast_2d(probabilities)
132
+ print(probabilities)
133
+ return probabilities
134
+
135
+
136
+ # def predict(text, model, tokenizer, max_len=128):
137
+ # sequences = tokenizer.texts_to_sequences([text])
138
+ # # Use our custom pad_sequences function:
139
+ # padded_sequences = pad_sequences_custom(sequences, maxlen=max_len, dtype="int32", value=0)
140
+ # prediction = model.predict(padded_sequences, batch_size=1, verbose=0)[0]
141
+ # pred_class = np.argmax(prediction)
142
+ # sentiment_labels = ["Negative", "Neutral", "Positive"]
143
+ # probabilities = prediction / prediction.sum()
144
+ # return sentiment_labels[pred_class], pred_class, probabilities
145
+
146
+
sentiment_analysis/sentiment_analysis_main.py CHANGED
@@ -195,7 +195,7 @@ if "model_changed" not in st.session_state:
195
  st.session_state.model_changed = False
196
  if "text_changed" not in st.session_state:
197
  st.session_state.text_changed = False
198
- if "processing" not in st.session_state:
199
  st.session_state.disabled = False
200
 
201
 
@@ -249,7 +249,9 @@ def show_sentiment_analysis():
249
  "⚠️ Error: Model failed to load! Check model selection or configuration.")
250
  st.stop()
251
 
252
- model.to(device)
 
 
253
 
254
  # predictions = predict(user_input, model, tokenizer, device)
255
 
@@ -270,7 +272,7 @@ def show_sentiment_analysis():
270
  st.write(f"**Predicted Sentiment Scores:** {predictions_array}")
271
 
272
  # enable_ui()
273
-
274
  # Display binary classification result
275
  st.write(f"**Predicted Sentiment:**")
276
  st.write(f"**NEGATIVE:** {binary_predictions[0]}, **NEUTRAL:** {binary_predictions[1]}, **POSITIVE:** {binary_predictions[2]}")
 
195
  st.session_state.model_changed = False
196
  if "text_changed" not in st.session_state:
197
  st.session_state.text_changed = False
198
+ if "disabled" not in st.session_state:
199
  st.session_state.disabled = False
200
 
201
 
 
249
  "⚠️ Error: Model failed to load! Check model selection or configuration.")
250
  st.stop()
251
 
252
+ # model.to(device)
253
+ if hasattr(model, "to"):
254
+ model.to(device)
255
 
256
  # predictions = predict(user_input, model, tokenizer, device)
257
 
 
272
  st.write(f"**Predicted Sentiment Scores:** {predictions_array}")
273
 
274
  # enable_ui()
275
+ ##
276
  # Display binary classification result
277
  st.write(f"**Predicted Sentiment:**")
278
  st.write(f"**NEGATIVE:** {binary_predictions[0]}, **NEUTRAL:** {binary_predictions[1]}, **POSITIVE:** {binary_predictions[2]}")