Archisman Karmakar commited on
Commit
2d6564f
·
1 Parent(s): 4822903

2025.03.21.post1

Browse files
app_main_hf.py CHANGED
@@ -31,6 +31,12 @@ else:
31
  except RuntimeError:
32
  asyncio.set_event_loop(asyncio.new_event_loop())
33
 
 
 
 
 
 
 
34
 
35
  import joblib
36
  import importlib
@@ -47,10 +53,6 @@ from dashboard import show_dashboard
47
 
48
  # from text_transformation import show_text_transformation
49
 
50
- st.set_page_config(
51
- page_title="Tachygraphy Microtext Analysis & Normalization",
52
- # layout="wide"
53
- )
54
 
55
 
56
  def free_memory():
@@ -112,10 +114,21 @@ def main():
112
 
113
  st.sidebar.title("Navigation")
114
  with st.sidebar:
 
 
 
 
 
 
 
 
 
 
 
115
  selection = option_menu(
116
  menu_title=None, # No title for a sleek look
117
  options=["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization"],
118
- icons=None,
119
  menu_icon="cast", # Main menu icon
120
  default_index=0, # Highlight the first option
121
  orientation="vertical",
@@ -126,11 +139,11 @@ def main():
126
  "font-size": "16px",
127
  "text-align": "left",
128
  "margin": "0px",
129
- "color": "#6c757d",
130
  "transition": "0.3s",
131
  },
132
  "nav-link-selected": {
133
- "background-color": "#FF4B4B",
134
  "color": "white",
135
  "font-weight": "bold",
136
  "border-radius": "8px",
@@ -160,22 +173,26 @@ def main():
160
  st.session_state.current_page = selection
161
 
162
  if selection == "Dashboard":
 
163
  # st.cache_resource.clear()
164
  # free_memory()
165
  show_dashboard()
166
 
167
  elif selection == "Stage 1: Sentiment Polarity Analysis":
 
168
  # st.cache_resource.clear()
169
  # free_memory()
170
  show_sentiment_analysis()
171
 
172
  elif selection == "Stage 2: Emotion Mood-tag Analysis":
 
173
  # st.cache_resource.clear()
174
  # free_memory()
175
  show_emotion_analysis()
176
  # st.write("This section is under development.")
177
 
178
  elif selection == "Stage 3: Text Transformation & Normalization":
 
179
  # st.cache_resource.clear()
180
  # free_memory()
181
  transform_and_normalize()
 
31
  except RuntimeError:
32
  asyncio.set_event_loop(asyncio.new_event_loop())
33
 
34
+ st.set_page_config(
35
+ # page_title="Tachygraphy Microtext Analysis & Normalization",
36
+ layout="wide"
37
+ )
38
+
39
+
40
 
41
  import joblib
42
  import importlib
 
53
 
54
  # from text_transformation import show_text_transformation
55
 
 
 
 
 
56
 
57
 
58
  def free_memory():
 
114
 
115
  st.sidebar.title("Navigation")
116
  with st.sidebar:
117
+
118
+ # selected = option_menu("Main Menu", ["Home", 'Settings'],
119
+ # icons=['house', 'gear'], menu_icon="cast", default_index=1)
120
+ # selected
121
+
122
+ # # 2. horizontal menu
123
+ # selected2 = option_menu(None, ["Home", "Upload", "Tasks", 'Settings'],
124
+ # icons=['house', 'cloud-upload', "list-task", 'gear'],
125
+ # menu_icon="cast", default_index=0, orientation="horizontal")
126
+ # selected2
127
+
128
  selection = option_menu(
129
  menu_title=None, # No title for a sleek look
130
  options=["Dashboard", "Stage 1: Sentiment Polarity Analysis", "Stage 2: Emotion Mood-tag Analysis", "Stage 3: Text Transformation & Normalization"],
131
+ icons=['house', 'diagram-3', "snow", 'activity'],
132
  menu_icon="cast", # Main menu icon
133
  default_index=0, # Highlight the first option
134
  orientation="vertical",
 
139
  "font-size": "16px",
140
  "text-align": "left",
141
  "margin": "0px",
142
+ "color": "#000000",
143
  "transition": "0.3s",
144
  },
145
  "nav-link-selected": {
146
+ "background-color": "#020045",
147
  "color": "white",
148
  "font-weight": "bold",
149
  "border-radius": "8px",
 
173
  st.session_state.current_page = selection
174
 
175
  if selection == "Dashboard":
176
+ # st.title("Tachygraphy Micro-text Analysis & Normalization")
177
  # st.cache_resource.clear()
178
  # free_memory()
179
  show_dashboard()
180
 
181
  elif selection == "Stage 1: Sentiment Polarity Analysis":
182
+ # st.title("Sentiment Polarity Analysis")
183
  # st.cache_resource.clear()
184
  # free_memory()
185
  show_sentiment_analysis()
186
 
187
  elif selection == "Stage 2: Emotion Mood-tag Analysis":
188
+ # st.title("Emotion Mood-tag Analysis")
189
  # st.cache_resource.clear()
190
  # free_memory()
191
  show_emotion_analysis()
192
  # st.write("This section is under development.")
193
 
194
  elif selection == "Stage 3: Text Transformation & Normalization":
195
+ # st.title("Text Transformation & Normalization")
196
  # st.cache_resource.clear()
197
  # free_memory()
198
  transform_and_normalize()
emotionMoodtag_analysis/emotion_analysis_main.py CHANGED
@@ -217,12 +217,12 @@ def show_emotion_analysis():
217
 
218
  # Model selection with change detection
219
  selected_model = st.selectbox(
220
- "Choose a model:", list(MODEL_OPTIONS.keys()), key="selected_model", on_change=on_model_change
221
  )
222
 
223
  # Text input with change detection
224
  user_input = st.text_input(
225
- "Enter text for emotions mood-tag analysis:", key="user_input", on_change=on_text_change
226
  )
227
  user_input_copy = user_input
228
 
 
217
 
218
  # Model selection with change detection
219
  selected_model = st.selectbox(
220
+ "Choose a model:", list(MODEL_OPTIONS.keys()), key="selected_model_stage2", on_change=on_model_change
221
  )
222
 
223
  # Text input with change detection
224
  user_input = st.text_input(
225
+ "Enter text for emotions mood-tag analysis:", key="user_input_stage2", on_change=on_text_change
226
  )
227
  user_input_copy = user_input
228
 
pyproject.toml CHANGED
@@ -1,6 +1,6 @@
1
  [project]
2
  name = "tachygraphy-microtext-analysis-and-normalization"
3
- version = "2025.03.21.post1"
4
  description = ""
5
  authors = [
6
  { name = "Archisman Karmakar", email = "[email protected]" },
 
1
  [project]
2
  name = "tachygraphy-microtext-analysis-and-normalization"
3
+ version = "2025.03.22.post1"
4
  description = ""
5
  authors = [
6
  { name = "Archisman Karmakar", email = "[email protected]" },
sentimentPolarity_analysis/sentiment_analysis_main.py CHANGED
@@ -215,12 +215,12 @@ def show_sentiment_analysis():
215
 
216
  # Model selection with change detection
217
  selected_model = st.selectbox(
218
- "Choose a model:", list(MODEL_OPTIONS.keys()), key="selected_model", on_change=on_model_change
219
  )
220
 
221
  # Text input with change detection
222
  user_input = st.text_input(
223
- "Enter text for sentiment analysis:", key="user_input", on_change=on_text_change
224
  )
225
  user_input_copy = user_input
226
 
 
215
 
216
  # Model selection with change detection
217
  selected_model = st.selectbox(
218
+ "Choose a model:", list(MODEL_OPTIONS.keys()), key="selected_model_stage1", on_change=on_model_change
219
  )
220
 
221
  # Text input with change detection
222
  user_input = st.text_input(
223
+ "Enter text for sentiment analysis:", key="user_input_stage1", on_change=on_text_change
224
  )
225
  user_input_copy = user_input
226
 
transformation_and_Normalization/config/stage3_models.json CHANGED
@@ -13,5 +13,35 @@
13
  "max_top_k": 50265,
14
  "load_function": "load_model",
15
  "predict_function": "predict"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
17
  }
 
13
  "max_top_k": 50265,
14
  "load_function": "load_model",
15
  "predict_function": "predict"
16
+ },
17
+ "2": {
18
+ "name": "Microsoft Prophet Net Uncased Large for Conditional Text Generation",
19
+ "type": "hf_automodel_finetuned_mstctg",
20
+ "module_path": "hmv_cfg_base_stage3.model2",
21
+ "hf_location": "tachygraphy-microtrext-norm-org/ProphetNet_ForCondGen_Uncased_Large_HFTSeq2Seq_Batch4_ngram3",
22
+ "tokenizer_class": "ProphetNetTokenizer",
23
+ "model_class": "ProphetNetForConditionalGeneration",
24
+ "problem_type": "text_transformamtion_and_normalization",
25
+ "base_model": "microsoft/prophetnet-large-uncased",
26
+ "base_model_class": "ProphetNetForConditionalGeneration",
27
+ "device": "cpu",
28
+ "max_top_k": 32128,
29
+ "load_function": "load_model",
30
+ "predict_function": "predict"
31
+ },
32
+ "3": {
33
+ "name": "Google T5 v1.1 Base for Conditional Text Generation",
34
+ "type": "hf_automodel_finetuned_gt5tctg",
35
+ "module_path": "hmv_cfg_base_stage3.model3",
36
+ "hf_location": "tachygraphy-microtrext-norm-org/T5-1.1-HF-seq2seq-Trainer-Batch4",
37
+ "tokenizer_class": "T5Tokenizer",
38
+ "model_class": "T5ForConditionalGeneration",
39
+ "problem_type": "text_transformamtion_and_normalization",
40
+ "base_model": "google/t5-v1_1-base",
41
+ "base_model_class": "T5ForConditionalGeneration",
42
+ "device": "cpu",
43
+ "max_top_k": 32128,
44
+ "load_function": "load_model",
45
+ "predict_function": "predict"
46
  }
47
  }
transformation_and_Normalization/hmv_cfg_base_stage3/model1.py CHANGED
@@ -9,7 +9,7 @@ import sys
9
  sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
10
 
11
  BASE_DIR = os.path.dirname(os.path.abspath(__file__))
12
- CONFIG_STAGE2 = os.path.join(BASE_DIR, "..", "config", "stage2_models.json")
13
 
14
 
15
  MODEL_OPTIONS = {
 
9
  sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
10
 
11
  BASE_DIR = os.path.dirname(os.path.abspath(__file__))
12
+ CONFIG_STAGE3 = os.path.join(BASE_DIR, "..", "config", "stage3_models.json")
13
 
14
 
15
  MODEL_OPTIONS = {
transformation_and_Normalization/hmv_cfg_base_stage3/model2.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import ProphetNetTokenizer, ProphetNetForConditionalGeneration, AutoTokenizer, AutoModelForSequenceClassification, AutoModel
2
+ import torch.nn.functional as F
3
+ from imports import *
4
+ import torch.nn as nn
5
+ import torch
6
+ import os
7
+ import sys
8
+
9
+ sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
10
+
11
+ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
12
+ CONFIG_STAGE3 = os.path.join(BASE_DIR, "..", "config", "stage3_models.json")
13
+
14
+
15
+ MODEL_OPTIONS = {
16
+ "2": {
17
+ "name": "Microsoft Prophet Net Uncased Large for Conditional Text Generation",
18
+ "type": "hf_automodel_finetuned_mstctg",
19
+ "module_path": "hmv_cfg_base_stage3.model2",
20
+ "hf_location": "tachygraphy-microtrext-norm-org/ProphetNet_ForCondGen_Uncased_Large_HFTSeq2Seq_Batch4_ngram3",
21
+ "tokenizer_class": "ProphetNetTokenizer",
22
+ "model_class": "ProphetNetForConditionalGeneration",
23
+ "problem_type": "text_transformamtion_and_normalization",
24
+ "base_model": "microsoft/prophetnet-large-uncased",
25
+ "base_model_class": "ProphetNetForConditionalGeneration",
26
+ "device": "cpu",
27
+ "max_top_k": 32128,
28
+ "load_function": "load_model",
29
+ "predict_function": "predict"
30
+ }
31
+ }
32
+
33
+ model_key = "2"
34
+ model_info = MODEL_OPTIONS[model_key]
35
+ hf_location = model_info["hf_location"]
36
+
37
+ tokenizer_class = globals()[model_info["tokenizer_class"]]
38
+ model_class = globals()[model_info["model_class"]]
39
+
40
+
41
+ @st.cache_resource
42
+ def load_model():
43
+ tokenizer = tokenizer_class.from_pretrained(hf_location)
44
+ print("Loading model 2")
45
+ model = model_class.from_pretrained(hf_location,
46
+ # device_map=torch.device(
47
+ # "cuda" if torch.cuda.is_available() else "cpu")
48
+ )
49
+ print("Model 2 loaded")
50
+
51
+ return model, tokenizer
52
+
53
+
54
+ def predict(
55
+ model, tokenizer, text, device,
56
+ num_return_sequences=1,
57
+ beams=None, # Beam search
58
+ do_sample=False, # Sampling flag
59
+ temp=None, # Temperature (only for sampling)
60
+ top_p=None,
61
+ top_k=None,
62
+ max_new_tokens=1024,
63
+ early_stopping=True
64
+ ):
65
+ # Tokenize input
66
+ padded = tokenizer(text, return_tensors='pt', truncation=False, padding=True).to(device)
67
+ input_ids = padded['input_ids'].to(device)
68
+ attention_mask = padded['attention_mask'].to(device)
69
+
70
+ # Validate arguments
71
+ if beams is not None and do_sample:
72
+ raise ValueError("Cannot use `beams` and `do_sample=True` together. Choose either beam search (`beams=5`) or sampling (`do_sample=True, temp=0.7`).")
73
+
74
+ if temp is not None and not do_sample:
75
+ raise ValueError("`temp` (temperature) can only be used in sampling mode (`do_sample=True`).")
76
+
77
+ if (top_p is not None or top_k is not None) and not do_sample:
78
+ raise ValueError("`top_p` and `top_k` can only be used in sampling mode (`do_sample=True`).")
79
+
80
+ # Beam search (Deterministic)
81
+ if beams is not None:
82
+ outputs = model.generate(
83
+ input_ids=input_ids,
84
+ attention_mask=attention_mask,
85
+ max_new_tokens=max_new_tokens,
86
+ num_return_sequences=num_return_sequences,
87
+ num_beams=beams,
88
+ early_stopping=early_stopping,
89
+ do_sample=False # No randomness
90
+ )
91
+
92
+ # Sampling Cases
93
+ else:
94
+ generate_args = {
95
+ "input_ids": input_ids,
96
+ "attention_mask": attention_mask,
97
+ "max_new_tokens": max_new_tokens,
98
+ "num_return_sequences": num_return_sequences,
99
+ "do_sample": True, # Enable stochastic sampling
100
+ "temperature": temp if temp is not None else 0.7, # Default temp if not passed
101
+ }
102
+
103
+ # Add `top_p` if set
104
+ if top_p is not None:
105
+ generate_args["top_p"] = top_p
106
+
107
+ # Add `top_k` if set
108
+ if top_k is not None:
109
+ generate_args["top_k"] = top_k
110
+
111
+ # Generate
112
+ outputs = model.generate(**generate_args)
113
+
114
+ # Decode predictions into human-readable text
115
+ predictions = tokenizer.batch_decode(outputs, skip_special_tokens=True)
116
+
117
+ return predictions
transformation_and_Normalization/hmv_cfg_base_stage3/model3.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSequenceClassification, AutoModel
2
+ import torch.nn.functional as F
3
+ from imports import *
4
+ import torch.nn as nn
5
+ import torch
6
+ import os
7
+ import sys
8
+
9
+ sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
10
+
11
+ BASE_DIR = os.path.dirname(os.path.abspath(__file__))
12
+ CONFIG_STAGE3 = os.path.join(BASE_DIR, "..", "config", "stage3_models.json")
13
+
14
+
15
+ MODEL_OPTIONS = {
16
+ "3": {
17
+ "name": "Google T5 v1.1 Base for Conditional Text Generation",
18
+ "type": "hf_automodel_finetuned_gt5tctg",
19
+ "module_path": "hmv_cfg_base_stage3.model3",
20
+ "hf_location": "tachygraphy-microtrext-norm-org/T5-1.1-HF-seq2seq-Trainer-Batch4",
21
+ "tokenizer_class": "T5Tokenizer",
22
+ "model_class": "T5ForConditionalGeneration",
23
+ "problem_type": "text_transformamtion_and_normalization",
24
+ "base_model": "google/t5-v1_1-base",
25
+ "base_model_class": "T5ForConditionalGeneration",
26
+ "device": "cpu",
27
+ "max_top_k": 32128,
28
+ "load_function": "load_model",
29
+ "predict_function": "predict"
30
+ }
31
+ }
32
+
33
+ model_key = "3"
34
+ model_info = MODEL_OPTIONS[model_key]
35
+ hf_location = model_info["hf_location"]
36
+
37
+ tokenizer_class = globals()[model_info["tokenizer_class"]]
38
+ model_class = globals()[model_info["model_class"]]
39
+
40
+
41
+ @st.cache_resource
42
+ def load_model():
43
+ tokenizer = tokenizer_class.from_pretrained(hf_location)
44
+ print("Loading model 3")
45
+ model = model_class.from_pretrained(hf_location,
46
+ # device_map=torch.device(
47
+ # "cuda" if torch.cuda.is_available() else "cpu")
48
+ )
49
+ print("Model 3 loaded")
50
+
51
+ return model, tokenizer
52
+
53
+
54
+ def predict(
55
+ model, tokenizer, text, device,
56
+ num_return_sequences=1,
57
+ beams=None, # Beam search
58
+ do_sample=False, # Sampling flag
59
+ temp=None, # Temperature (only for sampling)
60
+ top_p=None,
61
+ top_k=None,
62
+ max_new_tokens=1024,
63
+ early_stopping=True
64
+ ):
65
+ # Tokenize input
66
+ padded = tokenizer(text, return_tensors='pt', truncation=False, padding=True).to(device)
67
+ input_ids = padded['input_ids'].to(device)
68
+ attention_mask = padded['attention_mask'].to(device)
69
+
70
+ # Validate arguments
71
+ if beams is not None and do_sample:
72
+ raise ValueError("Cannot use `beams` and `do_sample=True` together. Choose either beam search (`beams=5`) or sampling (`do_sample=True, temp=0.7`).")
73
+
74
+ if temp is not None and not do_sample:
75
+ raise ValueError("`temp` (temperature) can only be used in sampling mode (`do_sample=True`).")
76
+
77
+ if (top_p is not None or top_k is not None) and not do_sample:
78
+ raise ValueError("`top_p` and `top_k` can only be used in sampling mode (`do_sample=True`).")
79
+
80
+ # Beam search (Deterministic)
81
+ if beams is not None:
82
+ outputs = model.generate(
83
+ input_ids=input_ids,
84
+ attention_mask=attention_mask,
85
+ max_new_tokens=max_new_tokens,
86
+ num_return_sequences=num_return_sequences,
87
+ num_beams=beams,
88
+ early_stopping=early_stopping,
89
+ do_sample=False # No randomness
90
+ )
91
+
92
+ # Sampling Cases
93
+ else:
94
+ generate_args = {
95
+ "input_ids": input_ids,
96
+ "attention_mask": attention_mask,
97
+ "max_new_tokens": max_new_tokens,
98
+ "num_return_sequences": num_return_sequences,
99
+ "do_sample": True, # Enable stochastic sampling
100
+ "temperature": temp if temp is not None else 0.7, # Default temp if not passed
101
+ }
102
+
103
+ # Add `top_p` if set
104
+ if top_p is not None:
105
+ generate_args["top_p"] = top_p
106
+
107
+ # Add `top_k` if set
108
+ if top_k is not None:
109
+ generate_args["top_k"] = top_k
110
+
111
+ # Generate
112
+ outputs = model.generate(**generate_args)
113
+
114
+ # Decode predictions into human-readable text
115
+ predictions = tokenizer.batch_decode(outputs, skip_special_tokens=True)
116
+
117
+ return predictions
transformation_and_Normalization/transformationNormalization_main.py CHANGED
@@ -224,6 +224,12 @@ def transform_and_normalize():
224
  # No cache clearing here—only in the model change callback!
225
 
226
  # st.write(st.session_state)
 
 
 
 
 
 
227
 
228
  if "top_k" not in st.session_state:
229
  st.session_state.top_k = 50
@@ -242,12 +248,12 @@ def transform_and_normalize():
242
 
243
  # Model selection with change detection; clearing cache happens in on_model_change()
244
  selected_model = st.selectbox(
245
- "Choose a model:", model_names, key="selected_model", on_change=on_model_change
246
  )
247
 
248
  # Text input with change detection
249
  user_input = st.text_input(
250
- "Enter text for emotions mood-tag analysis:", key="user_input", on_change=on_text_change
251
  )
252
 
253
  st.markdown("#### Generation Parameters")
@@ -321,7 +327,7 @@ def transform_and_normalize():
321
  user_input_copy = user_input
322
 
323
  current_time = time.time()
324
- if user_input.strip() and (current_time - st.session_state.last_change >= 1.5):
325
  st.session_state.last_processed_input = user_input
326
 
327
  progress_bar = st.progress(0)
@@ -348,11 +354,11 @@ def transform_and_normalize():
348
  update_progress(progress_bar, 10, 100)
349
 
350
  if len(predictions) > 1:
351
- st.write("### Multiple Predictions:")
352
  for i, pred in enumerate(predictions, start=1):
353
- st.markdown(f"**Sequence {i}:** {pred}")
354
  else:
355
- st.write("### Prediction:")
356
  st.write(predictions[0])
357
  progress_bar.empty()
358
  # else:
 
224
  # No cache clearing here—only in the model change callback!
225
 
226
  # st.write(st.session_state)
227
+
228
+ if "last_change" not in st.session_state:
229
+ st.session_state.last_change = time.time()
230
+ if "auto_predict_triggered" not in st.session_state:
231
+ st.session_state.auto_predict_triggered = False
232
+
233
 
234
  if "top_k" not in st.session_state:
235
  st.session_state.top_k = 50
 
248
 
249
  # Model selection with change detection; clearing cache happens in on_model_change()
250
  selected_model = st.selectbox(
251
+ "Choose a model:", model_names, key="selected_model_stage3", on_change=on_model_change
252
  )
253
 
254
  # Text input with change detection
255
  user_input = st.text_input(
256
+ "Enter text for emotions mood-tag analysis:", key="user_input_stage3", on_change=on_text_change
257
  )
258
 
259
  st.markdown("#### Generation Parameters")
 
327
  user_input_copy = user_input
328
 
329
  current_time = time.time()
330
+ if user_input.strip() and (current_time - st.session_state.last_change >= 1.25):
331
  st.session_state.last_processed_input = user_input
332
 
333
  progress_bar = st.progress(0)
 
354
  update_progress(progress_bar, 10, 100)
355
 
356
  if len(predictions) > 1:
357
+ st.write("### Predictions:")
358
  for i, pred in enumerate(predictions, start=1):
359
+ st.markdown(f"**Prediction Sequence {i}:** {pred}")
360
  else:
361
+ st.write("### Predicted Sequence:")
362
  st.write(predictions[0])
363
  progress_bar.empty()
364
  # else: