Archisman Karmakar
commited on
Commit
·
4822903
1
Parent(s):
9bbbd14
fix
Browse files
emotionMoodtag_analysis/emotion_analysis_main.py
CHANGED
|
@@ -291,35 +291,40 @@ def show_emotion_analysis():
|
|
| 291 |
# st.write(f"**NEUTRAL:** {binary_predictions[1]}")
|
| 292 |
# st.write(f"**POSITIVE:** {binary_predictions[2]}")
|
| 293 |
|
| 294 |
-
|
|
|
|
| 295 |
emotion_moodtags = predictions_array.tolist()
|
| 296 |
-
fig_polar = px.line_polar(
|
| 297 |
-
pd.DataFrame(dict(r=emotion_moodtags,
|
| 298 |
-
theta=EMOTION_MOODTAG_LABELS)),
|
| 299 |
-
r='r', theta='theta', line_close=True
|
| 300 |
-
)
|
| 301 |
-
st.plotly_chart(fig_polar)
|
| 302 |
|
| 303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
normalized_predictions = predictions_array / predictions_array.sum()
|
| 305 |
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
0.
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
|
|
|
|
|
|
| 323 |
|
| 324 |
progress_bar.empty()
|
| 325 |
|
|
|
|
| 291 |
# st.write(f"**NEUTRAL:** {binary_predictions[1]}")
|
| 292 |
# st.write(f"**POSITIVE:** {binary_predictions[2]}")
|
| 293 |
|
| 294 |
+
col1, col2 = st.columns(2)
|
| 295 |
+
|
| 296 |
emotion_moodtags = predictions_array.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
+
with col1:
|
| 299 |
+
# 1️⃣ **Polar Plot (Plotly)**
|
| 300 |
+
fig_polar = px.line_polar(
|
| 301 |
+
pd.DataFrame(dict(r=emotion_moodtags,
|
| 302 |
+
theta=EMOTION_MOODTAG_LABELS)),
|
| 303 |
+
r='r', theta='theta', line_close=True
|
| 304 |
+
)
|
| 305 |
+
st.plotly_chart(fig_polar)
|
| 306 |
+
|
| 307 |
normalized_predictions = predictions_array / predictions_array.sum()
|
| 308 |
|
| 309 |
+
with col2:
|
| 310 |
+
# 2️⃣ **Normalized Horizontal Bar Chart (Matplotlib)**
|
| 311 |
+
fig, ax = plt.subplots(figsize=(8, 2))
|
| 312 |
+
left = 0
|
| 313 |
+
for i in range(len(normalized_predictions)):
|
| 314 |
+
ax.barh(0, normalized_predictions[i], color=plt.cm.tab10(
|
| 315 |
+
i), left=left, label=EMOTION_MOODTAG_LABELS[i])
|
| 316 |
+
left += normalized_predictions[i]
|
| 317 |
+
|
| 318 |
+
# Configure the chart
|
| 319 |
+
ax.set_xlim(0, 1)
|
| 320 |
+
ax.set_yticks([])
|
| 321 |
+
ax.set_xticks(np.arange(0, 1.1, 0.1))
|
| 322 |
+
ax.legend(loc='upper center', bbox_to_anchor=(
|
| 323 |
+
0.5, -0.15), ncol=len(EMOTION_MOODTAG_LABELS))
|
| 324 |
+
plt.title("Emotion Mood-tags Prediction Distribution")
|
| 325 |
+
|
| 326 |
+
# Display in Streamlit
|
| 327 |
+
st.pyplot(fig)
|
| 328 |
|
| 329 |
progress_bar.empty()
|
| 330 |
|
sentimentPolarity_analysis/sentiment_analysis_main.py
CHANGED
|
@@ -288,35 +288,41 @@ def show_sentiment_analysis():
|
|
| 288 |
# st.write(f"**NEUTRAL:** {binary_predictions[1]}")
|
| 289 |
# st.write(f"**POSITIVE:** {binary_predictions[2]}")
|
| 290 |
|
| 291 |
-
|
|
|
|
| 292 |
sentiment_polarities = predictions_array.tolist()
|
| 293 |
-
fig_polar = px.line_polar(
|
| 294 |
-
pd.DataFrame(dict(r=sentiment_polarities,
|
| 295 |
-
theta=SENTIMENT_POLARITY_LABELS)),
|
| 296 |
-
r='r', theta='theta', line_close=True
|
| 297 |
-
)
|
| 298 |
-
st.plotly_chart(fig_polar)
|
| 299 |
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
normalized_predictions = predictions_array / predictions_array.sum()
|
| 302 |
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
|
|
|
|
|
|
|
|
|
| 320 |
|
| 321 |
progress_bar.empty()
|
| 322 |
|
|
|
|
| 288 |
# st.write(f"**NEUTRAL:** {binary_predictions[1]}")
|
| 289 |
# st.write(f"**POSITIVE:** {binary_predictions[2]}")
|
| 290 |
|
| 291 |
+
col1, col2 = st.columns(2)
|
| 292 |
+
|
| 293 |
sentiment_polarities = predictions_array.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
+
with col1:
|
| 296 |
+
# 1️⃣ **Polar Plot (Plotly)**
|
| 297 |
+
fig_polar = px.line_polar(
|
| 298 |
+
pd.DataFrame(dict(r=sentiment_polarities,
|
| 299 |
+
theta=SENTIMENT_POLARITY_LABELS)),
|
| 300 |
+
r='r', theta='theta', line_close=True
|
| 301 |
+
)
|
| 302 |
+
st.plotly_chart(fig_polar)
|
| 303 |
+
|
| 304 |
normalized_predictions = predictions_array / predictions_array.sum()
|
| 305 |
|
| 306 |
+
with col2:
|
| 307 |
+
# 2️⃣ **Normalized Horizontal Bar Chart (Matplotlib)**
|
| 308 |
+
|
| 309 |
+
fig, ax = plt.subplots(figsize=(8, 2))
|
| 310 |
+
left = 0
|
| 311 |
+
for i in range(len(normalized_predictions)):
|
| 312 |
+
ax.barh(0, normalized_predictions[i], color=plt.cm.tab10(
|
| 313 |
+
i), left=left, label=SENTIMENT_POLARITY_LABELS[i])
|
| 314 |
+
left += normalized_predictions[i]
|
| 315 |
+
|
| 316 |
+
# Configure the chart
|
| 317 |
+
ax.set_xlim(0, 1)
|
| 318 |
+
ax.set_yticks([])
|
| 319 |
+
ax.set_xticks(np.arange(0, 1.1, 0.1))
|
| 320 |
+
ax.legend(loc='upper center', bbox_to_anchor=(
|
| 321 |
+
0.5, -0.15), ncol=len(SENTIMENT_POLARITY_LABELS))
|
| 322 |
+
plt.title("Sentiment Polarity Prediction Distribution")
|
| 323 |
+
|
| 324 |
+
# Display in Streamlit
|
| 325 |
+
st.pyplot(fig)
|
| 326 |
|
| 327 |
progress_bar.empty()
|
| 328 |
|