|
import os |
|
import numpy as np |
|
import cv2 |
|
import pytesseract |
|
from pdf2image import convert_from_path |
|
from fastapi import FastAPI, UploadFile, File |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
app = FastAPI() |
|
|
|
|
|
MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b" |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) |
|
|
|
|
|
def extract_text_from_pdf(pdf_path: str) -> str: |
|
images = convert_from_path(pdf_path) |
|
extracted_text = "" |
|
|
|
for image in images: |
|
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) |
|
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY) |
|
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] |
|
text = pytesseract.image_to_string(thresh, lang="jpn") |
|
extracted_text += text + "\n" |
|
|
|
return extracted_text |
|
|
|
|
|
def summarize_text(text: str) -> str: |
|
prompt = f"以下の決算短信を投資家向けに要約してください:\n{text}" |
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096) |
|
output_ids = model.generate(inputs.input_ids, max_length=512, num_beams=5, early_stopping=True) |
|
return tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
|
|
|
|
@app.post("/upload/") |
|
async def upload_pdf(file: UploadFile = File(...)): |
|
file_path = f"/tmp/{file.filename}" |
|
|
|
|
|
with open(file_path, "wb") as f: |
|
f.write(await file.read()) |
|
|
|
|
|
extracted_text = extract_text_from_pdf(file_path) |
|
|
|
|
|
summary = summarize_text(extracted_text) |
|
|
|
return {"summary": summary} |
|
|