File size: 1,901 Bytes
ba651f7 9e1bf97 ba651f7 9e1bf97 ba651f7 2809bee 9e1bf97 ba651f7 9e1bf97 ba651f7 9e1bf97 2809bee 9e1bf97 c423e28 9e1bf97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import os
import numpy as np
import cv2
import pytesseract
from pdf2image import convert_from_path
from fastapi import FastAPI, UploadFile, File
from transformers import AutoTokenizer, AutoModelForCausalLM
app = FastAPI()
# Hugging Face LLMの設定
MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
# OCR関数(決算短信PDF -> テキスト変換)
def extract_text_from_pdf(pdf_path: str) -> str:
images = convert_from_path(pdf_path)
extracted_text = ""
for image in images:
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
text = pytesseract.image_to_string(thresh, lang="jpn")
extracted_text += text + "\n"
return extracted_text
# LLM要約関数(決算短信のOCRテキスト -> 投資家向け要約)
def summarize_text(text: str) -> str:
prompt = f"以下の決算短信を投資家向けに要約してください:\n{text}"
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)
output_ids = model.generate(inputs.input_ids, max_length=512, num_beams=5, early_stopping=True)
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
# FastAPIエンドポイント(ファイルアップロード & OCR処理 & LLM要約)
@app.post("/upload/")
async def upload_pdf(file: UploadFile = File(...)):
file_path = f"/tmp/{file.filename}"
# ファイルを保存
with open(file_path, "wb") as f:
f.write(await file.read())
# OCRでテキスト抽出
extracted_text = extract_text_from_pdf(file_path)
# LLMで要約
summary = summarize_text(extracted_text)
return {"summary": summary}
|