Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,56 @@
|
|
| 1 |
-
|
| 2 |
-
import
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
)
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import pytesseract
|
| 4 |
+
from pdf2image import convert_from_path
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
|
| 7 |
+
# --- 1. OCRで決算短信PDFからテキスト抽出 ---
|
| 8 |
+
# PDFファイル名
|
| 9 |
+
pdf_path = "kessan.pdf"
|
| 10 |
|
| 11 |
+
# PDFを画像に変換(1ページごとにリストへ)
|
| 12 |
+
images = convert_from_path(pdf_path)
|
| 13 |
+
|
| 14 |
+
# Tesseractのパス設定(必要な場合、環境に合わせて変更)
|
| 15 |
+
# 例: Windowsの場合
|
| 16 |
+
# pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
|
| 17 |
+
|
| 18 |
+
extracted_text = ""
|
| 19 |
+
|
| 20 |
+
for i, image in enumerate(images):
|
| 21 |
+
# PillowのImageオブジェクトをOpenCV形式に変換
|
| 22 |
+
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 23 |
+
|
| 24 |
+
# 前処理: グレースケール化、二値化(OTSU)やノイズ除去などを必要に応じて追加
|
| 25 |
+
gray = cv2.cvtColor(image_cv, cv2.COLOR_BGR2GRAY)
|
| 26 |
+
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
|
| 27 |
+
# OCR処理(日本語対応の場合はlang="jpn"を指定)
|
| 28 |
+
text = pytesseract.image_to_string(thresh, lang="jpn")
|
| 29 |
+
extracted_text += text + "\n"
|
| 30 |
+
|
| 31 |
+
print("OCR抽出完了。")
|
| 32 |
+
|
| 33 |
+
# --- 2. 抽出テキストをLLMへ入力して要約生成 ---
|
| 34 |
+
# Hugging Faceの蒸留済みLLM DeepSeek-Coder-1.3B の利用例
|
| 35 |
+
model_name = "deepseek-ai/deepseek-coder-1.3b"
|
| 36 |
+
|
| 37 |
+
# モデルとトークナイザーのロード
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 39 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 40 |
+
|
| 41 |
+
# プロンプト作成(必要に応じて調整)
|
| 42 |
+
prompt = (
|
| 43 |
+
"以下の決算短信の内容を要約し、投資家向けに分かりやすく説明してください:\n\n" +
|
| 44 |
+
extracted_text
|
| 45 |
)
|
| 46 |
|
| 47 |
+
# トークナイズ
|
| 48 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)
|
| 49 |
+
|
| 50 |
+
# 生成(max_lengthやその他のパラメータは必要に応じて調整)
|
| 51 |
+
output_ids = model.generate(inputs.input_ids, max_length=512, num_beams=5, early_stopping=True)
|
| 52 |
+
summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 53 |
|
| 54 |
+
print("\n=== 要約結果 ===")
|
| 55 |
+
print(summary)
|
| 56 |
|