Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,52 @@
|
|
1 |
import os
|
|
|
2 |
import cv2
|
3 |
import pytesseract
|
4 |
from pdf2image import convert_from_path
|
|
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
# OCR処理(日本語対応の場合はlang="jpn"を指定)
|
28 |
-
text = pytesseract.image_to_string(thresh, lang="jpn")
|
29 |
-
extracted_text += text + "\n"
|
30 |
-
|
31 |
-
print("OCR抽出完了。")
|
32 |
-
|
33 |
-
# --- 2. 抽出テキストをLLMへ入力して要約生成 ---
|
34 |
-
# Hugging Faceの蒸留済みLLM DeepSeek-Coder-1.3B の利用例
|
35 |
-
model_name = "deepseek-ai/deepseek-coder-1.3b"
|
36 |
-
|
37 |
-
# モデルとトークナイザーのロード
|
38 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
40 |
-
|
41 |
-
# プロンプト作成(必要に応じて調整)
|
42 |
-
prompt = (
|
43 |
-
"以下の決算短信の内容を要約し、投資家向けに分かりやすく説明してください:\n\n" +
|
44 |
-
extracted_text
|
45 |
-
)
|
46 |
-
|
47 |
-
# トークナイズ
|
48 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
53 |
|
54 |
-
|
55 |
-
|
56 |
|
|
|
|
1 |
import os
|
2 |
+
import numpy as np
|
3 |
import cv2
|
4 |
import pytesseract
|
5 |
from pdf2image import convert_from_path
|
6 |
+
from fastapi import FastAPI, UploadFile, File
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Hugging Face LLMの設定
|
12 |
+
MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
15 |
+
|
16 |
+
# OCR関数(決算短信PDF -> テキスト変換)
|
17 |
+
def extract_text_from_pdf(pdf_path: str) -> str:
|
18 |
+
images = convert_from_path(pdf_path)
|
19 |
+
extracted_text = ""
|
20 |
+
|
21 |
+
for image in images:
|
22 |
+
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
23 |
+
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
|
24 |
+
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
|
25 |
+
text = pytesseract.image_to_string(thresh, lang="jpn")
|
26 |
+
extracted_text += text + "\n"
|
27 |
+
|
28 |
+
return extracted_text
|
29 |
+
|
30 |
+
# LLM要約関数(決算短信のOCRテキスト -> 投資家向け要約)
|
31 |
+
def summarize_text(text: str) -> str:
|
32 |
+
prompt = f"以下の決算短信を投資家向けに要約してください:\n{text}"
|
33 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)
|
34 |
+
output_ids = model.generate(inputs.input_ids, max_length=512, num_beams=5, early_stopping=True)
|
35 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
36 |
+
|
37 |
+
# FastAPIエンドポイント(ファイルアップロード & OCR処理 & LLM要約)
|
38 |
+
@app.post("/upload/")
|
39 |
+
async def upload_pdf(file: UploadFile = File(...)):
|
40 |
+
file_path = f"/tmp/{file.filename}"
|
41 |
|
42 |
+
# ファイルを保存
|
43 |
+
with open(file_path, "wb") as f:
|
44 |
+
f.write(await file.read())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# OCRでテキスト抽出
|
47 |
+
extracted_text = extract_text_from_pdf(file_path)
|
|
|
48 |
|
49 |
+
# LLMで要約
|
50 |
+
summary = summarize_text(extracted_text)
|
51 |
|
52 |
+
return {"summary": summary}
|