Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre | |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre | |
from huggingface_hub import hf_hub_download | |
# Load models | |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5") | |
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5") | |
xcp_model = load_model(xcp_path) | |
eff_model = load_model(eff_path) | |
def predict(image_pil: Image.Image) -> str: | |
try: | |
# Convert PIL to numpy | |
image = np.array(image_pil.convert("RGB")) | |
# Resize and preprocess | |
xcp_img = cv2.resize(image, (299, 299)) | |
eff_img = cv2.resize(image, (224, 224)) | |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...] | |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...] | |
# Predict | |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0] | |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0] | |
avg_pred = (xcp_pred + eff_pred) / 2 | |
return "Real" if avg_pred > 0.5 else "Fake" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil", label="Upload Image"), # β Use PIL instead of numpy | |
outputs=gr.Textbox(label="Prediction"), # β Safe, schema-compatible | |
title="Deepfake Image Detector", | |
description="Upload a full image. The model classifies it as real or fake.", | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |