import os import cv2 import numpy as np import gradio as gr from PIL import Image import tensorflow as tf from tensorflow.keras.models import load_model from tensorflow.keras.applications.xception import preprocess_input as xcp_pre from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre from huggingface_hub import hf_hub_download # Load models xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5") eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5") xcp_model = load_model(xcp_path) eff_model = load_model(eff_path) def predict(image_pil: Image.Image) -> str: try: # Convert PIL to numpy image = np.array(image_pil.convert("RGB")) # Resize and preprocess xcp_img = cv2.resize(image, (299, 299)) eff_img = cv2.resize(image, (224, 224)) xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...] eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...] # Predict xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0] eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0] avg_pred = (xcp_pred + eff_pred) / 2 return "Real" if avg_pred > 0.5 else "Fake" except Exception as e: return f"Error: {str(e)}" demo = gr.Interface( fn=predict, inputs=gr.Image(type="pil", label="Upload Image"), # ✅ Use PIL instead of numpy outputs=gr.Textbox(label="Prediction"), # ✅ Safe, schema-compatible title="Deepfake Image Detector", description="Upload a full image. The model classifies it as real or fake.", allow_flagging="never" ) if __name__ == "__main__": demo.launch()