Spaces:
Runtime error
Runtime error
import json | |
import os | |
import pandas as pd | |
import numpy as np | |
from src.display.formatting import has_no_nan_values, make_clickable_model | |
from src.display.utils import AutoEvalColumn, EvalQueueColumn | |
from src.leaderboard.read_evals import get_raw_eval_results | |
# def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
# """Creates a dataframe from all the individual experiment results""" | |
# raw_data = get_raw_eval_results(results_path, requests_path) | |
# all_data_json = [v.to_dict() for v in raw_data] | |
# df = pd.DataFrame.from_records(all_data_json) | |
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
# df = df[cols].round(decimals=2) | |
# # filter out if any of the benchmarks have not been produced | |
# df = df[has_no_nan_values(df, benchmark_cols)] | |
# return df | |
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
"""Creates a dataframe from all the individual experiment results""" | |
# iterate thorugh all files in the results path and read them into json | |
all_data_json = [] | |
res_path = os.path.join(results_path, "demo-leaderboard", "syntherela-demo") | |
for entry in os.listdir(res_path): | |
if entry.endswith(".json"): | |
file_path = os.path.join(res_path, entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
all_data_json.append(data) | |
multi_table_metrics = [ | |
"AggregationDetection-LogisticRegression", | |
"AggregationDetection-XGBClassifier", | |
"CardinalityShapeSimilarity", | |
] | |
# create empty dataframe with the columns multi_table_metrics | |
multitable_df = pd.DataFrame(columns=["Dataset", "Model"] + multi_table_metrics) | |
# iterate through all json files and add the data to the dataframe | |
for data in all_data_json: | |
model = data["model"] | |
dataset = data["dataset"] | |
row = {"Dataset": dataset, "Model": model} | |
for metric in multi_table_metrics: | |
if metric in data["multi_table_metrics"]: | |
metric_values = [] | |
for table in data["multi_table_metrics"][metric].keys(): | |
if "accuracy" in data["multi_table_metrics"][metric][table]: | |
metric_values.append(data["multi_table_metrics"][metric][table]["accuracy"]) | |
if "statistic" in data["multi_table_metrics"][metric][table]: | |
metric_values.append(data["multi_table_metrics"][metric][table]["statistic"]) | |
row[metric] = np.mean(metric_values) | |
multitable_df = pd.concat([multitable_df, pd.DataFrame([row])], ignore_index=True) | |
return multitable_df | |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
"""Creates the different dataframes for the evaluation queues requestes""" | |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
all_evals = [] | |
for entry in entries: | |
if ".json" in entry: | |
file_path = os.path.join(save_path, entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
elif ".md" not in entry: | |
# this is a folder | |
sub_entries = [ | |
e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".") | |
] | |
for sub_entry in sub_entries: | |
file_path = os.path.join(save_path, entry, sub_entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
return df_finished[cols], df_running[cols], df_pending[cols] | |