Martin Jurkovic commited on
Commit
3b86dfc
Β·
1 Parent(s): d81956b

Add first version of syntherela leaderboard

Browse files
.python-version ADDED
@@ -0,0 +1 @@
 
 
1
+ syntherela_leaderboard
app.py CHANGED
@@ -21,8 +21,8 @@ from src.display.utils import (
21
  AutoEvalColumn,
22
  ModelType,
23
  fields,
24
- WeightType,
25
- Precision
26
  )
27
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
@@ -49,7 +49,7 @@ except Exception:
49
  restart_space()
50
 
51
 
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
 
54
  (
55
  finished_eval_queue_df,
@@ -68,21 +68,21 @@ def init_leaderboard(dataframe):
68
  cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
  label="Select Columns to Display:",
70
  ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
  hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
  filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
  ],
87
  bool_checkboxgroup_label="Hide models",
88
  interactive=False,
@@ -95,13 +95,13 @@ with demo:
95
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
 
97
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
  leaderboard = init_leaderboard(LEADERBOARD_DF)
100
 
101
- with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
102
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
 
104
- with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
105
  with gr.Column():
106
  with gr.Row():
107
  gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
@@ -156,21 +156,21 @@ with demo:
156
  interactive=True,
157
  )
158
 
159
- with gr.Column():
160
- precision = gr.Dropdown(
161
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
- label="Precision",
163
- multiselect=False,
164
- value="float16",
165
- interactive=True,
166
- )
167
- weight_type = gr.Dropdown(
168
- choices=[i.value.name for i in WeightType],
169
- label="Weights type",
170
- multiselect=False,
171
- value="Original",
172
- interactive=True,
173
- )
174
  base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
175
 
176
  submit_button = gr.Button("Submit Eval")
@@ -181,8 +181,8 @@ with demo:
181
  model_name_textbox,
182
  base_model_name_textbox,
183
  revision_name_textbox,
184
- precision,
185
- weight_type,
186
  model_type,
187
  ],
188
  submission_result,
 
21
  AutoEvalColumn,
22
  ModelType,
23
  fields,
24
+ # WeightType,
25
+ # Precision
26
  )
27
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
 
49
  restart_space()
50
 
51
 
52
+ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
53
 
54
  (
55
  finished_eval_queue_df,
 
68
  cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
  label="Select Columns to Display:",
70
  ),
71
+ search_columns=[AutoEvalColumn.model.name], # AutoEvalColumn.license.name],
72
  hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
  filter_columns=[
74
+ # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
+ # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
+ # ColumnFilter(
77
+ # AutoEvalColumn.params.name,
78
+ # type="slider",
79
+ # min=0.01,
80
+ # max=150,
81
+ # label="Select the number of parameters (B)",
82
+ # ),
83
+ # ColumnFilter(
84
+ # AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
+ # ),
86
  ],
87
  bool_checkboxgroup_label="Hide models",
88
  interactive=False,
 
95
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
 
97
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
+ with gr.TabItem("πŸ… Syntherela Benchmark", elem_id="syntherela-benchmark-tab-table", id=0):
99
  leaderboard = init_leaderboard(LEADERBOARD_DF)
100
 
101
+ with gr.TabItem("πŸ“ About", elem_id="syntherela-benchmark-tab-table", id=2):
102
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
 
104
+ with gr.TabItem("πŸš€ Submit here! ", elem_id="syntherela-benchmark-tab-table", id=3):
105
  with gr.Column():
106
  with gr.Row():
107
  gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
 
156
  interactive=True,
157
  )
158
 
159
+ # with gr.Column():
160
+ # precision = gr.Dropdown(
161
+ # choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
+ # label="Precision",
163
+ # multiselect=False,
164
+ # value="float16",
165
+ # interactive=True,
166
+ # )
167
+ # weight_type = gr.Dropdown(
168
+ # choices=[i.value.name for i in WeightType],
169
+ # label="Weights type",
170
+ # multiselect=False,
171
+ # value="Original",
172
+ # interactive=True,
173
+ # )
174
  base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
175
 
176
  submit_button = gr.Button("Submit Eval")
 
181
  model_name_textbox,
182
  base_model_name_textbox,
183
  revision_name_textbox,
184
+ # precision,
185
+ # weight_type,
186
  model_type,
187
  ],
188
  submission_result,
src/about.py CHANGED
@@ -12,8 +12,11 @@ class Task:
12
  # ---------------------------------------------------
13
  class Tasks(Enum):
14
  # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
 
 
 
17
 
18
  NUM_FEWSHOT = 0 # Change with your few shot
19
  # ---------------------------------------------------
 
12
  # ---------------------------------------------------
13
  class Tasks(Enum):
14
  # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
+ # task0 = Task("anli_r1", "acc", "ANLI")
16
+ # task1 = Task("logiqa", "acc_norm", "LogiQA")
17
+ task_0 = Task("multi-table", "AggregationDetection-LogisticRegression", "AggregationDetection-LogisticRegression")
18
+ task_1 = Task("multi-table", "AggregationDetection-XGBClassifier", "AggregationDetection-XGBClassifier")
19
+ task_2 = Task("multi-table", "CardinalityShapeSimilarity", "CardinalityShapeSimilarity")
20
 
21
  NUM_FEWSHOT = 0 # Change with your few shot
22
  # ---------------------------------------------------
src/display/utils.py CHANGED
@@ -23,22 +23,23 @@ class ColumnContent:
23
  ## Leaderboard columns
24
  auto_eval_column_dict = []
25
  # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
 
27
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
  #Scores
29
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
  for task in Tasks:
31
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
  # Model information
33
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
 
43
  # We use make dataclass to dynamically fill the scores from Tasks
44
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
@@ -47,11 +48,11 @@ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=
47
  @dataclass(frozen=True)
48
  class EvalQueueColumn: # Queue column
49
  model = ColumnContent("model", "markdown", True)
50
- revision = ColumnContent("revision", "str", True)
51
- private = ColumnContent("private", "bool", True)
52
- precision = ColumnContent("precision", "str", True)
53
- weight_type = ColumnContent("weight_type", "str", "Original")
54
- status = ColumnContent("status", "str", True)
55
 
56
  ## All the model information that we might need
57
  @dataclass
@@ -62,10 +63,12 @@ class ModelDetails:
62
 
63
 
64
  class ModelType(Enum):
65
- PT = ModelDetails(name="pretrained", symbol="🟒")
66
- FT = ModelDetails(name="fine-tuned", symbol="πŸ”Ά")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="β­•")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
 
 
69
  Unknown = ModelDetails(name="", symbol="?")
70
 
71
  def to_str(self, separator=" "):
@@ -73,32 +76,28 @@ class ModelType(Enum):
73
 
74
  @staticmethod
75
  def from_str(type):
76
- if "fine-tuned" in type or "πŸ”Ά" in type:
77
- return ModelType.FT
78
- if "pretrained" in type or "🟒" in type:
79
- return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "β­•" in type:
83
- return ModelType.IFT
84
  return ModelType.Unknown
85
 
86
- class WeightType(Enum):
87
- Adapter = ModelDetails("Adapter")
88
- Original = ModelDetails("Original")
89
- Delta = ModelDetails("Delta")
90
-
91
- class Precision(Enum):
92
- float16 = ModelDetails("float16")
93
- bfloat16 = ModelDetails("bfloat16")
94
- Unknown = ModelDetails("?")
95
-
96
- def from_str(precision):
97
- if precision in ["torch.float16", "float16"]:
98
- return Precision.float16
99
- if precision in ["torch.bfloat16", "bfloat16"]:
100
- return Precision.bfloat16
101
- return Precision.Unknown
102
 
103
  # Column selection
104
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
 
23
  ## Leaderboard columns
24
  auto_eval_column_dict = []
25
  # Init
26
+ # auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
+ auto_eval_column_dict.append(["dataset", ColumnContent, ColumnContent("Dataset", "str", True, never_hidden=True)])
28
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
29
  #Scores
30
+ # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
31
  for task in Tasks:
32
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
33
  # Model information
34
+ # auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
35
+ # auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
36
+ # auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
37
+ # auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
38
+ # auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
39
+ # auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
40
+ # auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
41
+ # auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
42
+ # auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
43
 
44
  # We use make dataclass to dynamically fill the scores from Tasks
45
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
 
48
  @dataclass(frozen=True)
49
  class EvalQueueColumn: # Queue column
50
  model = ColumnContent("model", "markdown", True)
51
+ # revision = ColumnContent("revision", "str", True)
52
+ # private = ColumnContent("private", "bool", True)
53
+ # precision = ColumnContent("precision", "str", True)
54
+ # weight_type = ColumnContent("weight_type", "str", "Original")
55
+ # status = ColumnContent("status", "str", True)
56
 
57
  ## All the model information that we might need
58
  @dataclass
 
63
 
64
 
65
  class ModelType(Enum):
66
+ OS = ModelDetails(name="open-source", symbol="πŸ†“")
67
+ CS = ModelDetails(name="closed-source", symbol="πŸ”’")
68
+ # PT = ModelDetails(name="pretrained", symbol="🟒")
69
+ # FT = ModelDetails(name="fine-tuned", symbol="πŸ”Ά")
70
+ # IFT = ModelDetails(name="instruction-tuned", symbol="β­•")
71
+ # RL = ModelDetails(name="RL-tuned", symbol="🟦")
72
  Unknown = ModelDetails(name="", symbol="?")
73
 
74
  def to_str(self, separator=" "):
 
76
 
77
  @staticmethod
78
  def from_str(type):
79
+ if "open-source" in type or "οΏ½οΏ½οΏ½" in type:
80
+ return ModelType.OS
81
+ if "closed-source" in type or "🟒" in type:
82
+ return ModelType.CS
 
 
 
 
83
  return ModelType.Unknown
84
 
85
+ # class WeightType(Enum):
86
+ # Adapter = ModelDetails("Adapter")
87
+ # Original = ModelDetails("Original")
88
+ # Delta = ModelDetails("Delta")
89
+
90
+ # class Precision(Enum):
91
+ # float16 = ModelDetails("float16")
92
+ # bfloat16 = ModelDetails("bfloat16")
93
+ # Unknown = ModelDetails("?")
94
+
95
+ # def from_str(precision):
96
+ # if precision in ["torch.float16", "float16"]:
97
+ # return Precision.float16
98
+ # if precision in ["torch.bfloat16", "bfloat16"]:
99
+ # return Precision.bfloat16
100
+ # return Precision.Unknown
101
 
102
  # Column selection
103
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
src/envs.py CHANGED
@@ -6,12 +6,13 @@ from huggingface_hub import HfApi
6
  # ----------------------------------
7
  TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
 
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
 
10
  # ----------------------------------
11
 
12
  REPO_ID = f"{OWNER}/leaderboard"
13
- QUEUE_REPO = f"{OWNER}/requests"
14
- RESULTS_REPO = f"{OWNER}/results"
15
 
16
  # If you setup a cache later, just change HF_HOME
17
  CACHE_PATH=os.getenv("HF_HOME", ".")
 
6
  # ----------------------------------
7
  TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
 
9
+ # OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
+ OWNER = "syntherela"
11
  # ----------------------------------
12
 
13
  REPO_ID = f"{OWNER}/leaderboard"
14
+ QUEUE_REPO = "demo-leaderboard-backend/requests"
15
+ RESULTS_REPO = f"{OWNER}/results-demo"
16
 
17
  # If you setup a cache later, just change HF_HOME
18
  CACHE_PATH=os.getenv("HF_HOME", ".")
src/leaderboard/read_evals.py CHANGED
@@ -8,7 +8,7 @@ import dateutil
8
  import numpy as np
9
 
10
  from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
  from src.submission.check_validity import is_model_on_hub
13
 
14
 
@@ -22,9 +22,9 @@ class EvalResult:
22
  model: str
23
  revision: str # commit hash, "" if main
24
  results: dict
25
- precision: Precision = Precision.Unknown
26
  model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
  architecture: str = "Unknown"
29
  license: str = "?"
30
  likes: int = 0
@@ -41,7 +41,7 @@ class EvalResult:
41
  config = data.get("config")
42
 
43
  # Precision
44
- precision = Precision.from_str(config.get("model_dtype"))
45
 
46
  # Get model and org
47
  org_and_model = config.get("model_name", config.get("model_args", None))
@@ -50,11 +50,11 @@ class EvalResult:
50
  if len(org_and_model) == 1:
51
  org = None
52
  model = org_and_model[0]
53
- result_key = f"{model}_{precision.value.name}"
54
  else:
55
  org = org_and_model[0]
56
  model = org_and_model[1]
57
- result_key = f"{org}_{model}_{precision.value.name}"
58
  full_model = "/".join(org_and_model)
59
 
60
  still_on_hub, _, model_config = is_model_on_hub(
@@ -85,7 +85,7 @@ class EvalResult:
85
  org=org,
86
  model=model,
87
  results=results,
88
- precision=precision,
89
  revision= config.get("model_sha", ""),
90
  still_on_hub=still_on_hub,
91
  architecture=architecture
@@ -99,7 +99,7 @@ class EvalResult:
99
  with open(request_file, "r") as f:
100
  request = json.load(f)
101
  self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- self.weight_type = WeightType[request.get("weight_type", "Original")]
103
  self.license = request.get("license", "?")
104
  self.likes = request.get("likes", 0)
105
  self.num_params = request.get("params", 0)
 
8
  import numpy as np
9
 
10
  from src.display.formatting import make_clickable_model
11
+ from src.display.utils import AutoEvalColumn, ModelType, Tasks # Precision, WeightType
12
  from src.submission.check_validity import is_model_on_hub
13
 
14
 
 
22
  model: str
23
  revision: str # commit hash, "" if main
24
  results: dict
25
+ # precision: Precision = Precision.Unknown
26
  model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
+ # weight_type: WeightType = WeightType.Original # Original or Adapter
28
  architecture: str = "Unknown"
29
  license: str = "?"
30
  likes: int = 0
 
41
  config = data.get("config")
42
 
43
  # Precision
44
+ # precision = Precision.from_str(config.get("model_dtype"))
45
 
46
  # Get model and org
47
  org_and_model = config.get("model_name", config.get("model_args", None))
 
50
  if len(org_and_model) == 1:
51
  org = None
52
  model = org_and_model[0]
53
+ result_key = f"{model}_" #{precision.value.name}"
54
  else:
55
  org = org_and_model[0]
56
  model = org_and_model[1]
57
+ result_key = f"{org}_{model}_" # {precision.value.name}"
58
  full_model = "/".join(org_and_model)
59
 
60
  still_on_hub, _, model_config = is_model_on_hub(
 
85
  org=org,
86
  model=model,
87
  results=results,
88
+ # precision=precision,
89
  revision= config.get("model_sha", ""),
90
  still_on_hub=still_on_hub,
91
  architecture=architecture
 
99
  with open(request_file, "r") as f:
100
  request = json.load(f)
101
  self.model_type = ModelType.from_str(request.get("model_type", ""))
102
+ # self.weight_type = WeightType[request.get("weight_type", "Original")]
103
  self.license = request.get("license", "?")
104
  self.likes = request.get("likes", 0)
105
  self.num_params = request.get("params", 0)
src/populate.py CHANGED
@@ -2,24 +2,66 @@ import json
2
  import os
3
 
4
  import pandas as pd
 
5
 
6
  from src.display.formatting import has_no_nan_values, make_clickable_model
7
  from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
  from src.leaderboard.read_evals import get_raw_eval_results
9
 
10
 
11
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  """Creates a dataframe from all the individual experiment results"""
13
- raw_data = get_raw_eval_results(results_path, requests_path)
14
- all_data_json = [v.to_dict() for v in raw_data]
15
 
16
- df = pd.DataFrame.from_records(all_data_json)
17
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
- df = df[cols].round(decimals=2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- # filter out if any of the benchmarks have not been produced
21
- df = df[has_no_nan_values(df, benchmark_cols)]
22
- return df
23
 
24
 
25
  def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
@@ -39,7 +81,9 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
39
  all_evals.append(data)
40
  elif ".md" not in entry:
41
  # this is a folder
42
- sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
 
 
43
  for sub_entry in sub_entries:
44
  file_path = os.path.join(save_path, entry, sub_entry)
45
  with open(file_path) as fp:
 
2
  import os
3
 
4
  import pandas as pd
5
+ import numpy as np
6
 
7
  from src.display.formatting import has_no_nan_values, make_clickable_model
8
  from src.display.utils import AutoEvalColumn, EvalQueueColumn
9
  from src.leaderboard.read_evals import get_raw_eval_results
10
 
11
 
12
+ # def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
13
+ # """Creates a dataframe from all the individual experiment results"""
14
+ # raw_data = get_raw_eval_results(results_path, requests_path)
15
+ # all_data_json = [v.to_dict() for v in raw_data]
16
+
17
+ # df = pd.DataFrame.from_records(all_data_json)
18
+ # df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
19
+ # df = df[cols].round(decimals=2)
20
+
21
+ # # filter out if any of the benchmarks have not been produced
22
+ # df = df[has_no_nan_values(df, benchmark_cols)]
23
+ # return df
24
+
25
+
26
+ def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
27
  """Creates a dataframe from all the individual experiment results"""
 
 
28
 
29
+ # iterate thorugh all files in the results path and read them into json
30
+ all_data_json = []
31
+ res_path = os.path.join(results_path, "demo-leaderboard", "syntherela-demo")
32
+ for entry in os.listdir(res_path):
33
+ if entry.endswith(".json"):
34
+ file_path = os.path.join(res_path, entry)
35
+ with open(file_path) as fp:
36
+ data = json.load(fp)
37
+ all_data_json.append(data)
38
+
39
+ multi_table_metrics = [
40
+ "AggregationDetection-LogisticRegression",
41
+ "AggregationDetection-XGBClassifier",
42
+ "CardinalityShapeSimilarity",
43
+ ]
44
+
45
+ # create empty dataframe with the columns multi_table_metrics
46
+ multitable_df = pd.DataFrame(columns=["Dataset", "Model"] + multi_table_metrics)
47
+
48
+ # iterate through all json files and add the data to the dataframe
49
+ for data in all_data_json:
50
+ model = data["model"]
51
+ dataset = data["dataset"]
52
+ row = {"Dataset": dataset, "Model": model}
53
+ for metric in multi_table_metrics:
54
+ if metric in data["multi_table_metrics"]:
55
+ metric_values = []
56
+ for table in data["multi_table_metrics"][metric].keys():
57
+ if "accuracy" in data["multi_table_metrics"][metric][table]:
58
+ metric_values.append(data["multi_table_metrics"][metric][table]["accuracy"])
59
+ if "statistic" in data["multi_table_metrics"][metric][table]:
60
+ metric_values.append(data["multi_table_metrics"][metric][table]["statistic"])
61
 
62
+ row[metric] = np.mean(metric_values)
63
+ multitable_df = pd.concat([multitable_df, pd.DataFrame([row])], ignore_index=True)
64
+ return multitable_df
65
 
66
 
67
  def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
 
81
  all_evals.append(data)
82
  elif ".md" not in entry:
83
  # this is a folder
84
+ sub_entries = [
85
+ e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")
86
+ ]
87
  for sub_entry in sub_entries:
88
  file_path = os.path.join(save_path, entry, sub_entry)
89
  with open(file_path) as fp: