Spaces:
Runtime error
Runtime error
Martin Jurkovic
commited on
Commit
Β·
3b86dfc
1
Parent(s):
d81956b
Add first version of syntherela leaderboard
Browse files- .python-version +1 -0
- app.py +36 -36
- src/about.py +5 -2
- src/display/utils.py +43 -44
- src/envs.py +4 -3
- src/leaderboard/read_evals.py +8 -8
- src/populate.py +54 -10
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
syntherela_leaderboard
|
app.py
CHANGED
@@ -21,8 +21,8 @@ from src.display.utils import (
|
|
21 |
AutoEvalColumn,
|
22 |
ModelType,
|
23 |
fields,
|
24 |
-
WeightType,
|
25 |
-
Precision
|
26 |
)
|
27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
@@ -49,7 +49,7 @@ except Exception:
|
|
49 |
restart_space()
|
50 |
|
51 |
|
52 |
-
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH,
|
53 |
|
54 |
(
|
55 |
finished_eval_queue_df,
|
@@ -68,21 +68,21 @@ def init_leaderboard(dataframe):
|
|
68 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
label="Select Columns to Display:",
|
70 |
),
|
71 |
-
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
72 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
filter_columns=[
|
74 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
75 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
-
ColumnFilter(
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
),
|
83 |
-
ColumnFilter(
|
84 |
-
|
85 |
-
),
|
86 |
],
|
87 |
bool_checkboxgroup_label="Hide models",
|
88 |
interactive=False,
|
@@ -95,13 +95,13 @@ with demo:
|
|
95 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
|
97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("π
|
99 |
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
100 |
|
101 |
-
with gr.TabItem("π About", elem_id="
|
102 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
103 |
|
104 |
-
with gr.TabItem("π Submit here! ", elem_id="
|
105 |
with gr.Column():
|
106 |
with gr.Row():
|
107 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
@@ -156,21 +156,21 @@ with demo:
|
|
156 |
interactive=True,
|
157 |
)
|
158 |
|
159 |
-
with gr.Column():
|
160 |
-
precision = gr.Dropdown(
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
)
|
167 |
-
weight_type = gr.Dropdown(
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
)
|
174 |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
|
176 |
submit_button = gr.Button("Submit Eval")
|
@@ -181,8 +181,8 @@ with demo:
|
|
181 |
model_name_textbox,
|
182 |
base_model_name_textbox,
|
183 |
revision_name_textbox,
|
184 |
-
precision,
|
185 |
-
weight_type,
|
186 |
model_type,
|
187 |
],
|
188 |
submission_result,
|
|
|
21 |
AutoEvalColumn,
|
22 |
ModelType,
|
23 |
fields,
|
24 |
+
# WeightType,
|
25 |
+
# Precision
|
26 |
)
|
27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
49 |
restart_space()
|
50 |
|
51 |
|
52 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
|
53 |
|
54 |
(
|
55 |
finished_eval_queue_df,
|
|
|
68 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
label="Select Columns to Display:",
|
70 |
),
|
71 |
+
search_columns=[AutoEvalColumn.model.name], # AutoEvalColumn.license.name],
|
72 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
filter_columns=[
|
74 |
+
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
75 |
+
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
+
# ColumnFilter(
|
77 |
+
# AutoEvalColumn.params.name,
|
78 |
+
# type="slider",
|
79 |
+
# min=0.01,
|
80 |
+
# max=150,
|
81 |
+
# label="Select the number of parameters (B)",
|
82 |
+
# ),
|
83 |
+
# ColumnFilter(
|
84 |
+
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
+
# ),
|
86 |
],
|
87 |
bool_checkboxgroup_label="Hide models",
|
88 |
interactive=False,
|
|
|
95 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
|
97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
+
with gr.TabItem("π
Syntherela Benchmark", elem_id="syntherela-benchmark-tab-table", id=0):
|
99 |
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
100 |
|
101 |
+
with gr.TabItem("π About", elem_id="syntherela-benchmark-tab-table", id=2):
|
102 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
103 |
|
104 |
+
with gr.TabItem("π Submit here! ", elem_id="syntherela-benchmark-tab-table", id=3):
|
105 |
with gr.Column():
|
106 |
with gr.Row():
|
107 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
|
|
156 |
interactive=True,
|
157 |
)
|
158 |
|
159 |
+
# with gr.Column():
|
160 |
+
# precision = gr.Dropdown(
|
161 |
+
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
162 |
+
# label="Precision",
|
163 |
+
# multiselect=False,
|
164 |
+
# value="float16",
|
165 |
+
# interactive=True,
|
166 |
+
# )
|
167 |
+
# weight_type = gr.Dropdown(
|
168 |
+
# choices=[i.value.name for i in WeightType],
|
169 |
+
# label="Weights type",
|
170 |
+
# multiselect=False,
|
171 |
+
# value="Original",
|
172 |
+
# interactive=True,
|
173 |
+
# )
|
174 |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
|
176 |
submit_button = gr.Button("Submit Eval")
|
|
|
181 |
model_name_textbox,
|
182 |
base_model_name_textbox,
|
183 |
revision_name_textbox,
|
184 |
+
# precision,
|
185 |
+
# weight_type,
|
186 |
model_type,
|
187 |
],
|
188 |
submission_result,
|
src/about.py
CHANGED
@@ -12,8 +12,11 @@ class Task:
|
|
12 |
# ---------------------------------------------------
|
13 |
class Tasks(Enum):
|
14 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
-
task0 = Task("anli_r1", "acc", "ANLI")
|
16 |
-
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
|
|
|
|
|
|
17 |
|
18 |
NUM_FEWSHOT = 0 # Change with your few shot
|
19 |
# ---------------------------------------------------
|
|
|
12 |
# ---------------------------------------------------
|
13 |
class Tasks(Enum):
|
14 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
+
# task0 = Task("anli_r1", "acc", "ANLI")
|
16 |
+
# task1 = Task("logiqa", "acc_norm", "LogiQA")
|
17 |
+
task_0 = Task("multi-table", "AggregationDetection-LogisticRegression", "AggregationDetection-LogisticRegression")
|
18 |
+
task_1 = Task("multi-table", "AggregationDetection-XGBClassifier", "AggregationDetection-XGBClassifier")
|
19 |
+
task_2 = Task("multi-table", "CardinalityShapeSimilarity", "CardinalityShapeSimilarity")
|
20 |
|
21 |
NUM_FEWSHOT = 0 # Change with your few shot
|
22 |
# ---------------------------------------------------
|
src/display/utils.py
CHANGED
@@ -23,22 +23,23 @@ class ColumnContent:
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
-
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
|
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
#Scores
|
29 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average β¬οΈ", "number", True)])
|
30 |
for task in Tasks:
|
31 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
# Model information
|
33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
|
40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
@@ -47,11 +48,11 @@ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=
|
|
47 |
@dataclass(frozen=True)
|
48 |
class EvalQueueColumn: # Queue column
|
49 |
model = ColumnContent("model", "markdown", True)
|
50 |
-
revision = ColumnContent("revision", "str", True)
|
51 |
-
private = ColumnContent("private", "bool", True)
|
52 |
-
precision = ColumnContent("precision", "str", True)
|
53 |
-
weight_type = ColumnContent("weight_type", "str", "Original")
|
54 |
-
status = ColumnContent("status", "str", True)
|
55 |
|
56 |
## All the model information that we might need
|
57 |
@dataclass
|
@@ -62,10 +63,12 @@ class ModelDetails:
|
|
62 |
|
63 |
|
64 |
class ModelType(Enum):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
Unknown = ModelDetails(name="", symbol="?")
|
70 |
|
71 |
def to_str(self, separator=" "):
|
@@ -73,32 +76,28 @@ class ModelType(Enum):
|
|
73 |
|
74 |
@staticmethod
|
75 |
def from_str(type):
|
76 |
-
if "
|
77 |
-
return ModelType.
|
78 |
-
if "
|
79 |
-
return ModelType.
|
80 |
-
if "RL-tuned" in type or "π¦" in type:
|
81 |
-
return ModelType.RL
|
82 |
-
if "instruction-tuned" in type or "β" in type:
|
83 |
-
return ModelType.IFT
|
84 |
return ModelType.Unknown
|
85 |
|
86 |
-
class WeightType(Enum):
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
class Precision(Enum):
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
# Column selection
|
104 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
+
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
+
auto_eval_column_dict.append(["dataset", ColumnContent, ColumnContent("Dataset", "str", True, never_hidden=True)])
|
28 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
29 |
#Scores
|
30 |
+
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average β¬οΈ", "number", True)])
|
31 |
for task in Tasks:
|
32 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
33 |
# Model information
|
34 |
+
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
35 |
+
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
36 |
+
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
37 |
+
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
38 |
+
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
39 |
+
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
40 |
+
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
|
41 |
+
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
42 |
+
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
43 |
|
44 |
# We use make dataclass to dynamically fill the scores from Tasks
|
45 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
48 |
@dataclass(frozen=True)
|
49 |
class EvalQueueColumn: # Queue column
|
50 |
model = ColumnContent("model", "markdown", True)
|
51 |
+
# revision = ColumnContent("revision", "str", True)
|
52 |
+
# private = ColumnContent("private", "bool", True)
|
53 |
+
# precision = ColumnContent("precision", "str", True)
|
54 |
+
# weight_type = ColumnContent("weight_type", "str", "Original")
|
55 |
+
# status = ColumnContent("status", "str", True)
|
56 |
|
57 |
## All the model information that we might need
|
58 |
@dataclass
|
|
|
63 |
|
64 |
|
65 |
class ModelType(Enum):
|
66 |
+
OS = ModelDetails(name="open-source", symbol="π")
|
67 |
+
CS = ModelDetails(name="closed-source", symbol="π")
|
68 |
+
# PT = ModelDetails(name="pretrained", symbol="π’")
|
69 |
+
# FT = ModelDetails(name="fine-tuned", symbol="πΆ")
|
70 |
+
# IFT = ModelDetails(name="instruction-tuned", symbol="β")
|
71 |
+
# RL = ModelDetails(name="RL-tuned", symbol="π¦")
|
72 |
Unknown = ModelDetails(name="", symbol="?")
|
73 |
|
74 |
def to_str(self, separator=" "):
|
|
|
76 |
|
77 |
@staticmethod
|
78 |
def from_str(type):
|
79 |
+
if "open-source" in type or "οΏ½οΏ½οΏ½" in type:
|
80 |
+
return ModelType.OS
|
81 |
+
if "closed-source" in type or "π’" in type:
|
82 |
+
return ModelType.CS
|
|
|
|
|
|
|
|
|
83 |
return ModelType.Unknown
|
84 |
|
85 |
+
# class WeightType(Enum):
|
86 |
+
# Adapter = ModelDetails("Adapter")
|
87 |
+
# Original = ModelDetails("Original")
|
88 |
+
# Delta = ModelDetails("Delta")
|
89 |
+
|
90 |
+
# class Precision(Enum):
|
91 |
+
# float16 = ModelDetails("float16")
|
92 |
+
# bfloat16 = ModelDetails("bfloat16")
|
93 |
+
# Unknown = ModelDetails("?")
|
94 |
+
|
95 |
+
# def from_str(precision):
|
96 |
+
# if precision in ["torch.float16", "float16"]:
|
97 |
+
# return Precision.float16
|
98 |
+
# if precision in ["torch.bfloat16", "bfloat16"]:
|
99 |
+
# return Precision.bfloat16
|
100 |
+
# return Precision.Unknown
|
101 |
|
102 |
# Column selection
|
103 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
src/envs.py
CHANGED
@@ -6,12 +6,13 @@ from huggingface_hub import HfApi
|
|
6 |
# ----------------------------------
|
7 |
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
|
9 |
-
OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
|
|
10 |
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/leaderboard"
|
13 |
-
QUEUE_REPO =
|
14 |
-
RESULTS_REPO = f"{OWNER}/results"
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
|
|
6 |
# ----------------------------------
|
7 |
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
|
9 |
+
# OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
+
OWNER = "syntherela"
|
11 |
# ----------------------------------
|
12 |
|
13 |
REPO_ID = f"{OWNER}/leaderboard"
|
14 |
+
QUEUE_REPO = "demo-leaderboard-backend/requests"
|
15 |
+
RESULTS_REPO = f"{OWNER}/results-demo"
|
16 |
|
17 |
# If you setup a cache later, just change HF_HOME
|
18 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
src/leaderboard/read_evals.py
CHANGED
@@ -8,7 +8,7 @@ import dateutil
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
@@ -22,9 +22,9 @@ class EvalResult:
|
|
22 |
model: str
|
23 |
revision: str # commit hash, "" if main
|
24 |
results: dict
|
25 |
-
precision: Precision = Precision.Unknown
|
26 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
-
weight_type: WeightType = WeightType.Original # Original or Adapter
|
28 |
architecture: str = "Unknown"
|
29 |
license: str = "?"
|
30 |
likes: int = 0
|
@@ -41,7 +41,7 @@ class EvalResult:
|
|
41 |
config = data.get("config")
|
42 |
|
43 |
# Precision
|
44 |
-
precision = Precision.from_str(config.get("model_dtype"))
|
45 |
|
46 |
# Get model and org
|
47 |
org_and_model = config.get("model_name", config.get("model_args", None))
|
@@ -50,11 +50,11 @@ class EvalResult:
|
|
50 |
if len(org_and_model) == 1:
|
51 |
org = None
|
52 |
model = org_and_model[0]
|
53 |
-
result_key = f"{model}_{precision.value.name}"
|
54 |
else:
|
55 |
org = org_and_model[0]
|
56 |
model = org_and_model[1]
|
57 |
-
result_key = f"{org}_{model}_{precision.value.name}"
|
58 |
full_model = "/".join(org_and_model)
|
59 |
|
60 |
still_on_hub, _, model_config = is_model_on_hub(
|
@@ -85,7 +85,7 @@ class EvalResult:
|
|
85 |
org=org,
|
86 |
model=model,
|
87 |
results=results,
|
88 |
-
precision=precision,
|
89 |
revision= config.get("model_sha", ""),
|
90 |
still_on_hub=still_on_hub,
|
91 |
architecture=architecture
|
@@ -99,7 +99,7 @@ class EvalResult:
|
|
99 |
with open(request_file, "r") as f:
|
100 |
request = json.load(f)
|
101 |
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
102 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
103 |
self.license = request.get("license", "?")
|
104 |
self.likes = request.get("likes", 0)
|
105 |
self.num_params = request.get("params", 0)
|
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks # Precision, WeightType
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
|
|
22 |
model: str
|
23 |
revision: str # commit hash, "" if main
|
24 |
results: dict
|
25 |
+
# precision: Precision = Precision.Unknown
|
26 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
+
# weight_type: WeightType = WeightType.Original # Original or Adapter
|
28 |
architecture: str = "Unknown"
|
29 |
license: str = "?"
|
30 |
likes: int = 0
|
|
|
41 |
config = data.get("config")
|
42 |
|
43 |
# Precision
|
44 |
+
# precision = Precision.from_str(config.get("model_dtype"))
|
45 |
|
46 |
# Get model and org
|
47 |
org_and_model = config.get("model_name", config.get("model_args", None))
|
|
|
50 |
if len(org_and_model) == 1:
|
51 |
org = None
|
52 |
model = org_and_model[0]
|
53 |
+
result_key = f"{model}_" #{precision.value.name}"
|
54 |
else:
|
55 |
org = org_and_model[0]
|
56 |
model = org_and_model[1]
|
57 |
+
result_key = f"{org}_{model}_" # {precision.value.name}"
|
58 |
full_model = "/".join(org_and_model)
|
59 |
|
60 |
still_on_hub, _, model_config = is_model_on_hub(
|
|
|
85 |
org=org,
|
86 |
model=model,
|
87 |
results=results,
|
88 |
+
# precision=precision,
|
89 |
revision= config.get("model_sha", ""),
|
90 |
still_on_hub=still_on_hub,
|
91 |
architecture=architecture
|
|
|
99 |
with open(request_file, "r") as f:
|
100 |
request = json.load(f)
|
101 |
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
102 |
+
# self.weight_type = WeightType[request.get("weight_type", "Original")]
|
103 |
self.license = request.get("license", "?")
|
104 |
self.likes = request.get("likes", 0)
|
105 |
self.num_params = request.get("params", 0)
|
src/populate.py
CHANGED
@@ -2,24 +2,66 @@ import json
|
|
2 |
import os
|
3 |
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
|
11 |
-
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
-
raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
-
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
return
|
23 |
|
24 |
|
25 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
@@ -39,7 +81,9 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
39 |
all_evals.append(data)
|
40 |
elif ".md" not in entry:
|
41 |
# this is a folder
|
42 |
-
sub_entries = [
|
|
|
|
|
43 |
for sub_entry in sub_entries:
|
44 |
file_path = os.path.join(save_path, entry, sub_entry)
|
45 |
with open(file_path) as fp:
|
|
|
2 |
import os
|
3 |
|
4 |
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
|
7 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
8 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
9 |
from src.leaderboard.read_evals import get_raw_eval_results
|
10 |
|
11 |
|
12 |
+
# def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
13 |
+
# """Creates a dataframe from all the individual experiment results"""
|
14 |
+
# raw_data = get_raw_eval_results(results_path, requests_path)
|
15 |
+
# all_data_json = [v.to_dict() for v in raw_data]
|
16 |
+
|
17 |
+
# df = pd.DataFrame.from_records(all_data_json)
|
18 |
+
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
19 |
+
# df = df[cols].round(decimals=2)
|
20 |
+
|
21 |
+
# # filter out if any of the benchmarks have not been produced
|
22 |
+
# df = df[has_no_nan_values(df, benchmark_cols)]
|
23 |
+
# return df
|
24 |
+
|
25 |
+
|
26 |
+
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
27 |
"""Creates a dataframe from all the individual experiment results"""
|
|
|
|
|
28 |
|
29 |
+
# iterate thorugh all files in the results path and read them into json
|
30 |
+
all_data_json = []
|
31 |
+
res_path = os.path.join(results_path, "demo-leaderboard", "syntherela-demo")
|
32 |
+
for entry in os.listdir(res_path):
|
33 |
+
if entry.endswith(".json"):
|
34 |
+
file_path = os.path.join(res_path, entry)
|
35 |
+
with open(file_path) as fp:
|
36 |
+
data = json.load(fp)
|
37 |
+
all_data_json.append(data)
|
38 |
+
|
39 |
+
multi_table_metrics = [
|
40 |
+
"AggregationDetection-LogisticRegression",
|
41 |
+
"AggregationDetection-XGBClassifier",
|
42 |
+
"CardinalityShapeSimilarity",
|
43 |
+
]
|
44 |
+
|
45 |
+
# create empty dataframe with the columns multi_table_metrics
|
46 |
+
multitable_df = pd.DataFrame(columns=["Dataset", "Model"] + multi_table_metrics)
|
47 |
+
|
48 |
+
# iterate through all json files and add the data to the dataframe
|
49 |
+
for data in all_data_json:
|
50 |
+
model = data["model"]
|
51 |
+
dataset = data["dataset"]
|
52 |
+
row = {"Dataset": dataset, "Model": model}
|
53 |
+
for metric in multi_table_metrics:
|
54 |
+
if metric in data["multi_table_metrics"]:
|
55 |
+
metric_values = []
|
56 |
+
for table in data["multi_table_metrics"][metric].keys():
|
57 |
+
if "accuracy" in data["multi_table_metrics"][metric][table]:
|
58 |
+
metric_values.append(data["multi_table_metrics"][metric][table]["accuracy"])
|
59 |
+
if "statistic" in data["multi_table_metrics"][metric][table]:
|
60 |
+
metric_values.append(data["multi_table_metrics"][metric][table]["statistic"])
|
61 |
|
62 |
+
row[metric] = np.mean(metric_values)
|
63 |
+
multitable_df = pd.concat([multitable_df, pd.DataFrame([row])], ignore_index=True)
|
64 |
+
return multitable_df
|
65 |
|
66 |
|
67 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
|
81 |
all_evals.append(data)
|
82 |
elif ".md" not in entry:
|
83 |
# this is a folder
|
84 |
+
sub_entries = [
|
85 |
+
e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")
|
86 |
+
]
|
87 |
for sub_entry in sub_entries:
|
88 |
file_path = os.path.join(save_path, entry, sub_entry)
|
89 |
with open(file_path) as fp:
|