import json import os import pandas as pd import numpy as np from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results # def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: # """Creates a dataframe from all the individual experiment results""" # raw_data = get_raw_eval_results(results_path, requests_path) # all_data_json = [v.to_dict() for v in raw_data] # df = pd.DataFrame.from_records(all_data_json) # df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) # df = df[cols].round(decimals=2) # # filter out if any of the benchmarks have not been produced # df = df[has_no_nan_values(df, benchmark_cols)] # return df def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" # iterate thorugh all files in the results path and read them into json all_data_json = [] res_path = os.path.join(results_path, "demo-leaderboard", "syntherela-demo") for entry in os.listdir(res_path): if entry.endswith(".json"): file_path = os.path.join(res_path, entry) with open(file_path) as fp: data = json.load(fp) all_data_json.append(data) multi_table_metrics = [ "AggregationDetection-LogisticRegression", "AggregationDetection-XGBClassifier", "CardinalityShapeSimilarity", ] # create empty dataframe with the columns multi_table_metrics multitable_df = pd.DataFrame(columns=["Dataset", "Model"] + multi_table_metrics) # iterate through all json files and add the data to the dataframe for data in all_data_json: model = data["model"] dataset = data["dataset"] row = {"Dataset": dataset, "Model": model} for metric in multi_table_metrics: if metric in data["multi_table_metrics"]: metric_values = [] for table in data["multi_table_metrics"][metric].keys(): if "accuracy" in data["multi_table_metrics"][metric][table]: metric_values.append(data["multi_table_metrics"][metric][table]["accuracy"]) if "statistic" in data["multi_table_metrics"][metric][table]: metric_values.append(data["multi_table_metrics"][metric][table]["statistic"]) row[metric] = np.mean(metric_values) multitable_df = pd.concat([multitable_df, pd.DataFrame([row])], ignore_index=True) return multitable_df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [ e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".") ] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]