Spaces:
Runtime error
Runtime error
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
from copy import deepcopy | |
from typing import Optional, Tuple | |
# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma | |
import torch | |
import torch.nn as nn | |
from timm.models.layers import DropPath | |
from torch.nn import Linear, Module, init | |
from diffusion.model.builder import MODELS | |
from diffusion.model.nets.basic_modules import DWMlp, GLUMBConv, MBConvPreGLU, Mlp | |
from diffusion.model.nets.fastlinear.modules import TritonLiteMLA, TritonMBConvPreGLU | |
from diffusion.model.nets.sana import Sana, get_2d_sincos_pos_embed | |
from diffusion.model.nets.sana_blocks import ( | |
Attention, | |
CaptionEmbedder, | |
FlashAttention, | |
LiteLA, | |
MultiHeadCrossAttention, | |
PatchEmbedMS, | |
T2IFinalLayer, | |
t2i_modulate, | |
) | |
from diffusion.model.nets.sana_multi_scale import SanaMS, SanaMSBlock | |
from diffusion.model.utils import auto_grad_checkpoint, to_2tuple | |
############################################################################# | |
# Core Sana Model # | |
################################################################################# | |
class ControlSanaMSBlock(Module): | |
def __init__(self, base_block: SanaMSBlock, block_index: int) -> None: | |
super().__init__() | |
self.copied_block = deepcopy(base_block) | |
self.block_index = block_index | |
self.hidden_size = hidden_size = base_block.hidden_size | |
if self.block_index == 0: | |
self.before_proj = Linear(hidden_size, hidden_size) | |
self.after_proj = Linear(hidden_size, hidden_size) | |
def initialize_all_and_copy_from_base(self, base_block): | |
for name, param in self.named_parameters(): | |
param.requires_grad_(True) | |
self.copied_block.load_state_dict(base_block.state_dict()) | |
self.train() | |
if self.block_index == 0: | |
init.zeros_(self.before_proj.weight) | |
init.zeros_(self.before_proj.bias) | |
init.zeros_(self.after_proj.weight) | |
init.zeros_(self.after_proj.bias) | |
def forward(self, x, y, t, control_signal, mask=None, HW=None): | |
if self.block_index == 0: | |
# the first block | |
control_signal = self.before_proj(control_signal) | |
control_signal = self.copied_block(x + control_signal, y, t, mask, HW) | |
control_signal_skip = self.after_proj(control_signal) | |
else: | |
# load from previous control_signal and produce the control_signal for skip connection | |
control_signal = self.copied_block(control_signal, y, t, mask, HW) | |
control_signal_skip = self.after_proj(control_signal) | |
return control_signal, control_signal_skip | |
class SanaMSControlNet(SanaMS): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
class_dropout_prob=0.1, | |
learn_sigma=True, | |
pred_sigma=True, | |
drop_path: float = 0.0, | |
caption_channels=4096, | |
pe_interpolation=1.0, | |
config=None, | |
model_max_length=300, | |
qk_norm=False, | |
y_norm=False, | |
norm_eps=1e-5, | |
attn_type="flash", | |
ffn_type="mlp", | |
use_pe=True, | |
y_norm_scale_factor=1.0, | |
patch_embed_kernel=None, | |
mlp_acts=("silu", "gelu", None), | |
linear_head_dim=32, | |
copy_blocks_num=7, | |
**kwargs, | |
): | |
super().__init__( | |
input_size=input_size, | |
patch_size=patch_size, | |
in_channels=in_channels, | |
hidden_size=hidden_size, | |
depth=depth, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
class_dropout_prob=class_dropout_prob, | |
learn_sigma=learn_sigma, | |
pred_sigma=pred_sigma, | |
drop_path=drop_path, | |
caption_channels=caption_channels, | |
pe_interpolation=pe_interpolation, | |
config=config, | |
model_max_length=model_max_length, | |
qk_norm=qk_norm, | |
y_norm=y_norm, | |
norm_eps=norm_eps, | |
attn_type=attn_type, | |
ffn_type=ffn_type, | |
use_pe=use_pe, | |
y_norm_scale_factor=y_norm_scale_factor, | |
patch_embed_kernel=patch_embed_kernel, | |
mlp_acts=mlp_acts, | |
linear_head_dim=linear_head_dim, | |
**kwargs, | |
) | |
self.h = self.w = 0 | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) | |
self.pos_embed_ms = None | |
kernel_size = patch_embed_kernel or patch_size | |
self.x_embedder = PatchEmbedMS(patch_size, in_channels, hidden_size, kernel_size=kernel_size, bias=True) | |
self.y_embedder = CaptionEmbedder( | |
in_channels=caption_channels, | |
hidden_size=hidden_size, | |
uncond_prob=class_dropout_prob, | |
act_layer=approx_gelu, | |
token_num=model_max_length, | |
) | |
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList( | |
[ | |
SanaMSBlock( | |
hidden_size, | |
num_heads, | |
mlp_ratio=mlp_ratio, | |
drop_path=drop_path[i], | |
input_size=(input_size // patch_size, input_size // patch_size), | |
qk_norm=qk_norm, | |
attn_type=attn_type, | |
ffn_type=ffn_type, | |
mlp_acts=mlp_acts, | |
linear_head_dim=linear_head_dim, | |
) | |
for i in range(depth) | |
] | |
) | |
self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels) | |
# define controlnet | |
self.copy_blocks_num = copy_blocks_num | |
self.controlnet = nn.ModuleList([ControlSanaMSBlock(self.blocks[i], i) for i in range(copy_blocks_num)]) | |
def load_pretrain_and_initialize(self, model_path): | |
missing, unexpected = self.load_state_dict(torch.load(model_path)["state_dict"], strict=False) | |
self.initialize_all() | |
return missing, unexpected | |
def initialize_all(self): | |
# freeze all the parameters | |
for p in self.parameters(): | |
p.requires_grad_(False) | |
# self.eval() | |
for i, block in enumerate(self.controlnet): | |
block.initialize_all_and_copy_from_base(self.blocks[i]) | |
def forward_controlnet(self, control_signal): | |
if self.use_pe: | |
control_signal = self.x_embedder(control_signal) + self.pos_embed_ms | |
else: | |
control_signal = self.x_embedder(control_signal) | |
return control_signal | |
def forward(self, x, timestep, control_signal, y, mask=None, data_info=None, **kwargs): | |
""" | |
Forward pass of Sana. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N, 1, 120, C) tensor of class labels | |
""" | |
bs = x.shape[0] | |
x = x.to(self.dtype) | |
timestep = timestep.to(self.dtype) | |
y = y.to(self.dtype) | |
self.h, self.w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size | |
if self.use_pe: | |
x = self.x_embedder(x) | |
if self.pos_embed_ms is None or self.pos_embed_ms.shape[1:] != x.shape[1:]: | |
self.pos_embed_ms = ( | |
torch.from_numpy( | |
get_2d_sincos_pos_embed( | |
self.pos_embed.shape[-1], | |
(self.h, self.w), | |
pe_interpolation=self.pe_interpolation, | |
base_size=self.base_size, | |
) | |
) | |
.unsqueeze(0) | |
.to(x.device) | |
.to(self.dtype) | |
) | |
x += self.pos_embed_ms # (N, T, D), where T = H * W / patch_size ** 2 | |
else: | |
x = self.x_embedder(x) | |
# control signal branch | |
control_signal = control_signal.to(self.dtype) | |
control_signal = self.forward_controlnet(control_signal) | |
t = self.t_embedder(timestep) # (N, D) | |
t0 = self.t_block(t) | |
y = self.y_embedder(y, self.training, mask=mask) # (N, D) | |
if self.y_norm: | |
y = self.attention_y_norm(y) | |
if mask is not None: | |
if mask.shape[0] != y.shape[0]: | |
mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | |
mask = mask.squeeze(1).squeeze(1) | |
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | |
y_lens = mask.sum(dim=1).tolist() | |
else: | |
y_lens = [y.shape[2]] * y.shape[0] | |
y = y.squeeze(1).view(1, -1, x.shape[-1]) | |
x = auto_grad_checkpoint(self.blocks[0], x, y, t0, y_lens, (self.h, self.w), **kwargs) | |
for i in range(1, self.copy_blocks_num + 1): | |
control_signal, control_signal_skip = auto_grad_checkpoint( | |
self.controlnet[i - 1], x, y, t0, control_signal, y_lens, (self.h, self.w), **kwargs | |
) | |
x = auto_grad_checkpoint(self.blocks[i], x + control_signal_skip, y, t0, y_lens, (self.h, self.w), **kwargs) | |
for i in range(self.copy_blocks_num + 1, len(self.blocks)): | |
x = auto_grad_checkpoint(self.blocks[i], x, y, t0, y_lens, (self.h, self.w), **kwargs) | |
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
x = self.unpatchify(x) # (N, out_channels, H, W) | |
return x | |
def __call__(self, *args, **kwargs): | |
""" | |
This method allows the object to be called like a function. | |
It simply calls the forward method. | |
""" | |
return self.forward(*args, **kwargs) | |
def forward_with_dpmsolver(self, x, timestep, y, data_info, **kwargs): | |
""" | |
dpm solver donnot need variance prediction | |
""" | |
control_signal = kwargs.pop("control_signal", None) | |
assert control_signal is not None, "control_signal is required for dpm solver" | |
assert control_signal.dim() == 4, "control_signal should be a 4D tensor" | |
if x.shape[0] != control_signal.shape[0]: | |
control_signal = control_signal.repeat(x.shape[0] // control_signal.shape[0], 1, 1, 1) | |
assert control_signal.shape[0] == x.shape[0], "control_signal and x should have the same batch size" | |
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
model_out = self.forward(x, timestep, control_signal, y, data_info=data_info, **kwargs) | |
return model_out.chunk(2, dim=1)[0] if self.pred_sigma else model_out | |
################################################################################# | |
# Sana Multi-scale Configs # | |
################################################################################# | |
def SanaMSControlNet_600M_P1_D28(**kwargs): | |
return SanaMSControlNet(depth=28, hidden_size=1152, patch_size=1, num_heads=16, **kwargs) | |
def SanaMSControlNet_1600M_P1_D20(**kwargs): | |
return SanaMSControlNet(depth=20, hidden_size=2240, patch_size=1, num_heads=20, **kwargs) | |