Spaces:
Runtime error
Runtime error
| # Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # SPDX-License-Identifier: Apache-2.0 | |
| from copy import deepcopy | |
| from typing import Optional, Tuple | |
| # This file is modified from https://github.com/PixArt-alpha/PixArt-sigma | |
| import torch | |
| import torch.nn as nn | |
| from timm.models.layers import DropPath | |
| from torch.nn import Linear, Module, init | |
| from diffusion.model.builder import MODELS | |
| from diffusion.model.nets.basic_modules import DWMlp, GLUMBConv, MBConvPreGLU, Mlp | |
| from diffusion.model.nets.fastlinear.modules import TritonLiteMLA, TritonMBConvPreGLU | |
| from diffusion.model.nets.sana import Sana, get_2d_sincos_pos_embed | |
| from diffusion.model.nets.sana_blocks import ( | |
| Attention, | |
| CaptionEmbedder, | |
| FlashAttention, | |
| LiteLA, | |
| MultiHeadCrossAttention, | |
| PatchEmbedMS, | |
| T2IFinalLayer, | |
| t2i_modulate, | |
| ) | |
| from diffusion.model.nets.sana_multi_scale import SanaMS, SanaMSBlock | |
| from diffusion.model.utils import auto_grad_checkpoint, to_2tuple | |
| ############################################################################# | |
| # Core Sana Model # | |
| ################################################################################# | |
| class ControlSanaMSBlock(Module): | |
| def __init__(self, base_block: SanaMSBlock, block_index: int) -> None: | |
| super().__init__() | |
| self.copied_block = deepcopy(base_block) | |
| self.block_index = block_index | |
| self.hidden_size = hidden_size = base_block.hidden_size | |
| if self.block_index == 0: | |
| self.before_proj = Linear(hidden_size, hidden_size) | |
| self.after_proj = Linear(hidden_size, hidden_size) | |
| def initialize_all_and_copy_from_base(self, base_block): | |
| for name, param in self.named_parameters(): | |
| param.requires_grad_(True) | |
| self.copied_block.load_state_dict(base_block.state_dict()) | |
| self.train() | |
| if self.block_index == 0: | |
| init.zeros_(self.before_proj.weight) | |
| init.zeros_(self.before_proj.bias) | |
| init.zeros_(self.after_proj.weight) | |
| init.zeros_(self.after_proj.bias) | |
| def forward(self, x, y, t, control_signal, mask=None, HW=None): | |
| if self.block_index == 0: | |
| # the first block | |
| control_signal = self.before_proj(control_signal) | |
| control_signal = self.copied_block(x + control_signal, y, t, mask, HW) | |
| control_signal_skip = self.after_proj(control_signal) | |
| else: | |
| # load from previous control_signal and produce the control_signal for skip connection | |
| control_signal = self.copied_block(control_signal, y, t, mask, HW) | |
| control_signal_skip = self.after_proj(control_signal) | |
| return control_signal, control_signal_skip | |
| class SanaMSControlNet(SanaMS): | |
| """ | |
| Diffusion model with a Transformer backbone. | |
| """ | |
| def __init__( | |
| self, | |
| input_size=32, | |
| patch_size=2, | |
| in_channels=4, | |
| hidden_size=1152, | |
| depth=28, | |
| num_heads=16, | |
| mlp_ratio=4.0, | |
| class_dropout_prob=0.1, | |
| learn_sigma=True, | |
| pred_sigma=True, | |
| drop_path: float = 0.0, | |
| caption_channels=4096, | |
| pe_interpolation=1.0, | |
| config=None, | |
| model_max_length=300, | |
| qk_norm=False, | |
| y_norm=False, | |
| norm_eps=1e-5, | |
| attn_type="flash", | |
| ffn_type="mlp", | |
| use_pe=True, | |
| y_norm_scale_factor=1.0, | |
| patch_embed_kernel=None, | |
| mlp_acts=("silu", "gelu", None), | |
| linear_head_dim=32, | |
| copy_blocks_num=7, | |
| **kwargs, | |
| ): | |
| super().__init__( | |
| input_size=input_size, | |
| patch_size=patch_size, | |
| in_channels=in_channels, | |
| hidden_size=hidden_size, | |
| depth=depth, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| class_dropout_prob=class_dropout_prob, | |
| learn_sigma=learn_sigma, | |
| pred_sigma=pred_sigma, | |
| drop_path=drop_path, | |
| caption_channels=caption_channels, | |
| pe_interpolation=pe_interpolation, | |
| config=config, | |
| model_max_length=model_max_length, | |
| qk_norm=qk_norm, | |
| y_norm=y_norm, | |
| norm_eps=norm_eps, | |
| attn_type=attn_type, | |
| ffn_type=ffn_type, | |
| use_pe=use_pe, | |
| y_norm_scale_factor=y_norm_scale_factor, | |
| patch_embed_kernel=patch_embed_kernel, | |
| mlp_acts=mlp_acts, | |
| linear_head_dim=linear_head_dim, | |
| **kwargs, | |
| ) | |
| self.h = self.w = 0 | |
| approx_gelu = lambda: nn.GELU(approximate="tanh") | |
| self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) | |
| self.pos_embed_ms = None | |
| kernel_size = patch_embed_kernel or patch_size | |
| self.x_embedder = PatchEmbedMS(patch_size, in_channels, hidden_size, kernel_size=kernel_size, bias=True) | |
| self.y_embedder = CaptionEmbedder( | |
| in_channels=caption_channels, | |
| hidden_size=hidden_size, | |
| uncond_prob=class_dropout_prob, | |
| act_layer=approx_gelu, | |
| token_num=model_max_length, | |
| ) | |
| drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule | |
| self.blocks = nn.ModuleList( | |
| [ | |
| SanaMSBlock( | |
| hidden_size, | |
| num_heads, | |
| mlp_ratio=mlp_ratio, | |
| drop_path=drop_path[i], | |
| input_size=(input_size // patch_size, input_size // patch_size), | |
| qk_norm=qk_norm, | |
| attn_type=attn_type, | |
| ffn_type=ffn_type, | |
| mlp_acts=mlp_acts, | |
| linear_head_dim=linear_head_dim, | |
| ) | |
| for i in range(depth) | |
| ] | |
| ) | |
| self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels) | |
| # define controlnet | |
| self.copy_blocks_num = copy_blocks_num | |
| self.controlnet = nn.ModuleList([ControlSanaMSBlock(self.blocks[i], i) for i in range(copy_blocks_num)]) | |
| def load_pretrain_and_initialize(self, model_path): | |
| missing, unexpected = self.load_state_dict(torch.load(model_path)["state_dict"], strict=False) | |
| self.initialize_all() | |
| return missing, unexpected | |
| def initialize_all(self): | |
| # freeze all the parameters | |
| for p in self.parameters(): | |
| p.requires_grad_(False) | |
| # self.eval() | |
| for i, block in enumerate(self.controlnet): | |
| block.initialize_all_and_copy_from_base(self.blocks[i]) | |
| def forward_controlnet(self, control_signal): | |
| if self.use_pe: | |
| control_signal = self.x_embedder(control_signal) + self.pos_embed_ms | |
| else: | |
| control_signal = self.x_embedder(control_signal) | |
| return control_signal | |
| def forward(self, x, timestep, control_signal, y, mask=None, data_info=None, **kwargs): | |
| """ | |
| Forward pass of Sana. | |
| x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
| t: (N,) tensor of diffusion timesteps | |
| y: (N, 1, 120, C) tensor of class labels | |
| """ | |
| bs = x.shape[0] | |
| x = x.to(self.dtype) | |
| timestep = timestep.to(self.dtype) | |
| y = y.to(self.dtype) | |
| self.h, self.w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size | |
| if self.use_pe: | |
| x = self.x_embedder(x) | |
| if self.pos_embed_ms is None or self.pos_embed_ms.shape[1:] != x.shape[1:]: | |
| self.pos_embed_ms = ( | |
| torch.from_numpy( | |
| get_2d_sincos_pos_embed( | |
| self.pos_embed.shape[-1], | |
| (self.h, self.w), | |
| pe_interpolation=self.pe_interpolation, | |
| base_size=self.base_size, | |
| ) | |
| ) | |
| .unsqueeze(0) | |
| .to(x.device) | |
| .to(self.dtype) | |
| ) | |
| x += self.pos_embed_ms # (N, T, D), where T = H * W / patch_size ** 2 | |
| else: | |
| x = self.x_embedder(x) | |
| # control signal branch | |
| control_signal = control_signal.to(self.dtype) | |
| control_signal = self.forward_controlnet(control_signal) | |
| t = self.t_embedder(timestep) # (N, D) | |
| t0 = self.t_block(t) | |
| y = self.y_embedder(y, self.training, mask=mask) # (N, D) | |
| if self.y_norm: | |
| y = self.attention_y_norm(y) | |
| if mask is not None: | |
| if mask.shape[0] != y.shape[0]: | |
| mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | |
| mask = mask.squeeze(1).squeeze(1) | |
| y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | |
| y_lens = mask.sum(dim=1).tolist() | |
| else: | |
| y_lens = [y.shape[2]] * y.shape[0] | |
| y = y.squeeze(1).view(1, -1, x.shape[-1]) | |
| x = auto_grad_checkpoint(self.blocks[0], x, y, t0, y_lens, (self.h, self.w), **kwargs) | |
| for i in range(1, self.copy_blocks_num + 1): | |
| control_signal, control_signal_skip = auto_grad_checkpoint( | |
| self.controlnet[i - 1], x, y, t0, control_signal, y_lens, (self.h, self.w), **kwargs | |
| ) | |
| x = auto_grad_checkpoint(self.blocks[i], x + control_signal_skip, y, t0, y_lens, (self.h, self.w), **kwargs) | |
| for i in range(self.copy_blocks_num + 1, len(self.blocks)): | |
| x = auto_grad_checkpoint(self.blocks[i], x, y, t0, y_lens, (self.h, self.w), **kwargs) | |
| x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
| x = self.unpatchify(x) # (N, out_channels, H, W) | |
| return x | |
| def __call__(self, *args, **kwargs): | |
| """ | |
| This method allows the object to be called like a function. | |
| It simply calls the forward method. | |
| """ | |
| return self.forward(*args, **kwargs) | |
| def forward_with_dpmsolver(self, x, timestep, y, data_info, **kwargs): | |
| """ | |
| dpm solver donnot need variance prediction | |
| """ | |
| control_signal = kwargs.pop("control_signal", None) | |
| assert control_signal is not None, "control_signal is required for dpm solver" | |
| assert control_signal.dim() == 4, "control_signal should be a 4D tensor" | |
| if x.shape[0] != control_signal.shape[0]: | |
| control_signal = control_signal.repeat(x.shape[0] // control_signal.shape[0], 1, 1, 1) | |
| assert control_signal.shape[0] == x.shape[0], "control_signal and x should have the same batch size" | |
| # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
| model_out = self.forward(x, timestep, control_signal, y, data_info=data_info, **kwargs) | |
| return model_out.chunk(2, dim=1)[0] if self.pred_sigma else model_out | |
| ################################################################################# | |
| # Sana Multi-scale Configs # | |
| ################################################################################# | |
| def SanaMSControlNet_600M_P1_D28(**kwargs): | |
| return SanaMSControlNet(depth=28, hidden_size=1152, patch_size=1, num_heads=16, **kwargs) | |
| def SanaMSControlNet_1600M_P1_D20(**kwargs): | |
| return SanaMSControlNet(depth=20, hidden_size=2240, patch_size=1, num_heads=20, **kwargs) | |