File size: 12,193 Bytes
f1f9265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

from copy import deepcopy
from typing import Optional, Tuple

# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma
import torch
import torch.nn as nn
from timm.models.layers import DropPath
from torch.nn import Linear, Module, init

from diffusion.model.builder import MODELS
from diffusion.model.nets.basic_modules import DWMlp, GLUMBConv, MBConvPreGLU, Mlp
from diffusion.model.nets.fastlinear.modules import TritonLiteMLA, TritonMBConvPreGLU
from diffusion.model.nets.sana import Sana, get_2d_sincos_pos_embed
from diffusion.model.nets.sana_blocks import (
    Attention,
    CaptionEmbedder,
    FlashAttention,
    LiteLA,
    MultiHeadCrossAttention,
    PatchEmbedMS,
    T2IFinalLayer,
    t2i_modulate,
)
from diffusion.model.nets.sana_multi_scale import SanaMS, SanaMSBlock
from diffusion.model.utils import auto_grad_checkpoint, to_2tuple

#############################################################################
#                                 Core Sana Model                                #
#################################################################################


class ControlSanaMSBlock(Module):
    def __init__(self, base_block: SanaMSBlock, block_index: int) -> None:
        super().__init__()
        self.copied_block = deepcopy(base_block)
        self.block_index = block_index
        self.hidden_size = hidden_size = base_block.hidden_size
        if self.block_index == 0:
            self.before_proj = Linear(hidden_size, hidden_size)

        self.after_proj = Linear(hidden_size, hidden_size)

    def initialize_all_and_copy_from_base(self, base_block):
        for name, param in self.named_parameters():
            param.requires_grad_(True)

        self.copied_block.load_state_dict(base_block.state_dict())
        self.train()

        if self.block_index == 0:
            init.zeros_(self.before_proj.weight)
            init.zeros_(self.before_proj.bias)

        init.zeros_(self.after_proj.weight)
        init.zeros_(self.after_proj.bias)

    def forward(self, x, y, t, control_signal, mask=None, HW=None):
        if self.block_index == 0:
            # the first block
            control_signal = self.before_proj(control_signal)
            control_signal = self.copied_block(x + control_signal, y, t, mask, HW)
            control_signal_skip = self.after_proj(control_signal)
        else:
            # load from previous control_signal and produce the control_signal for skip connection
            control_signal = self.copied_block(control_signal, y, t, mask, HW)
            control_signal_skip = self.after_proj(control_signal)

        return control_signal, control_signal_skip


@MODELS.register_module()
class SanaMSControlNet(SanaMS):
    """
    Diffusion model with a Transformer backbone.
    """

    def __init__(
        self,
        input_size=32,
        patch_size=2,
        in_channels=4,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        class_dropout_prob=0.1,
        learn_sigma=True,
        pred_sigma=True,
        drop_path: float = 0.0,
        caption_channels=4096,
        pe_interpolation=1.0,
        config=None,
        model_max_length=300,
        qk_norm=False,
        y_norm=False,
        norm_eps=1e-5,
        attn_type="flash",
        ffn_type="mlp",
        use_pe=True,
        y_norm_scale_factor=1.0,
        patch_embed_kernel=None,
        mlp_acts=("silu", "gelu", None),
        linear_head_dim=32,
        copy_blocks_num=7,
        **kwargs,
    ):
        super().__init__(
            input_size=input_size,
            patch_size=patch_size,
            in_channels=in_channels,
            hidden_size=hidden_size,
            depth=depth,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            class_dropout_prob=class_dropout_prob,
            learn_sigma=learn_sigma,
            pred_sigma=pred_sigma,
            drop_path=drop_path,
            caption_channels=caption_channels,
            pe_interpolation=pe_interpolation,
            config=config,
            model_max_length=model_max_length,
            qk_norm=qk_norm,
            y_norm=y_norm,
            norm_eps=norm_eps,
            attn_type=attn_type,
            ffn_type=ffn_type,
            use_pe=use_pe,
            y_norm_scale_factor=y_norm_scale_factor,
            patch_embed_kernel=patch_embed_kernel,
            mlp_acts=mlp_acts,
            linear_head_dim=linear_head_dim,
            **kwargs,
        )
        self.h = self.w = 0
        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))
        self.pos_embed_ms = None

        kernel_size = patch_embed_kernel or patch_size
        self.x_embedder = PatchEmbedMS(patch_size, in_channels, hidden_size, kernel_size=kernel_size, bias=True)
        self.y_embedder = CaptionEmbedder(
            in_channels=caption_channels,
            hidden_size=hidden_size,
            uncond_prob=class_dropout_prob,
            act_layer=approx_gelu,
            token_num=model_max_length,
        )
        drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList(
            [
                SanaMSBlock(
                    hidden_size,
                    num_heads,
                    mlp_ratio=mlp_ratio,
                    drop_path=drop_path[i],
                    input_size=(input_size // patch_size, input_size // patch_size),
                    qk_norm=qk_norm,
                    attn_type=attn_type,
                    ffn_type=ffn_type,
                    mlp_acts=mlp_acts,
                    linear_head_dim=linear_head_dim,
                )
                for i in range(depth)
            ]
        )

        self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels)

        # define controlnet
        self.copy_blocks_num = copy_blocks_num
        self.controlnet = nn.ModuleList([ControlSanaMSBlock(self.blocks[i], i) for i in range(copy_blocks_num)])

    def load_pretrain_and_initialize(self, model_path):
        missing, unexpected = self.load_state_dict(torch.load(model_path)["state_dict"], strict=False)
        self.initialize_all()
        return missing, unexpected

    def initialize_all(self):
        # freeze all the parameters
        for p in self.parameters():
            p.requires_grad_(False)
        # self.eval()

        for i, block in enumerate(self.controlnet):
            block.initialize_all_and_copy_from_base(self.blocks[i])

    def forward_controlnet(self, control_signal):
        if self.use_pe:
            control_signal = self.x_embedder(control_signal) + self.pos_embed_ms
        else:
            control_signal = self.x_embedder(control_signal)
        return control_signal

    def forward(self, x, timestep, control_signal, y, mask=None, data_info=None, **kwargs):
        """
        Forward pass of Sana.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N, 1, 120, C) tensor of class labels
        """

        bs = x.shape[0]
        x = x.to(self.dtype)
        timestep = timestep.to(self.dtype)
        y = y.to(self.dtype)

        self.h, self.w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
        if self.use_pe:
            x = self.x_embedder(x)
            if self.pos_embed_ms is None or self.pos_embed_ms.shape[1:] != x.shape[1:]:
                self.pos_embed_ms = (
                    torch.from_numpy(
                        get_2d_sincos_pos_embed(
                            self.pos_embed.shape[-1],
                            (self.h, self.w),
                            pe_interpolation=self.pe_interpolation,
                            base_size=self.base_size,
                        )
                    )
                    .unsqueeze(0)
                    .to(x.device)
                    .to(self.dtype)
                )
            x += self.pos_embed_ms  # (N, T, D), where T = H * W / patch_size ** 2
        else:
            x = self.x_embedder(x)

        # control signal branch
        control_signal = control_signal.to(self.dtype)
        control_signal = self.forward_controlnet(control_signal)

        t = self.t_embedder(timestep)  # (N, D)
        t0 = self.t_block(t)
        y = self.y_embedder(y, self.training, mask=mask)  # (N, D)
        if self.y_norm:
            y = self.attention_y_norm(y)

        if mask is not None:
            if mask.shape[0] != y.shape[0]:
                mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
            mask = mask.squeeze(1).squeeze(1)
            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
            y_lens = mask.sum(dim=1).tolist()
        else:
            y_lens = [y.shape[2]] * y.shape[0]
            y = y.squeeze(1).view(1, -1, x.shape[-1])

        x = auto_grad_checkpoint(self.blocks[0], x, y, t0, y_lens, (self.h, self.w), **kwargs)

        for i in range(1, self.copy_blocks_num + 1):
            control_signal, control_signal_skip = auto_grad_checkpoint(
                self.controlnet[i - 1], x, y, t0, control_signal, y_lens, (self.h, self.w), **kwargs
            )
            x = auto_grad_checkpoint(self.blocks[i], x + control_signal_skip, y, t0, y_lens, (self.h, self.w), **kwargs)

        for i in range(self.copy_blocks_num + 1, len(self.blocks)):
            x = auto_grad_checkpoint(self.blocks[i], x, y, t0, y_lens, (self.h, self.w), **kwargs)

        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)
        x = self.unpatchify(x)  # (N, out_channels, H, W)

        return x

    def __call__(self, *args, **kwargs):
        """
        This method allows the object to be called like a function.
        It simply calls the forward method.
        """
        return self.forward(*args, **kwargs)

    def forward_with_dpmsolver(self, x, timestep, y, data_info, **kwargs):
        """
        dpm solver donnot need variance prediction
        """
        control_signal = kwargs.pop("control_signal", None)
        assert control_signal is not None, "control_signal is required for dpm solver"
        assert control_signal.dim() == 4, "control_signal should be a 4D tensor"

        if x.shape[0] != control_signal.shape[0]:
            control_signal = control_signal.repeat(x.shape[0] // control_signal.shape[0], 1, 1, 1)

        assert control_signal.shape[0] == x.shape[0], "control_signal and x should have the same batch size"

        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        model_out = self.forward(x, timestep, control_signal, y, data_info=data_info, **kwargs)
        return model_out.chunk(2, dim=1)[0] if self.pred_sigma else model_out


#################################################################################
#                                   Sana Multi-scale Configs                              #
#################################################################################


@MODELS.register_module()
def SanaMSControlNet_600M_P1_D28(**kwargs):
    return SanaMSControlNet(depth=28, hidden_size=1152, patch_size=1, num_heads=16, **kwargs)


@MODELS.register_module()
def SanaMSControlNet_1600M_P1_D20(**kwargs):
    return SanaMSControlNet(depth=20, hidden_size=2240, patch_size=1, num_heads=20, **kwargs)