File size: 9,050 Bytes
8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 d16663b 8aedf76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import gradio as gr
from PIL import Image
import numpy as np
import cv2
from lang_sam import LangSAM
from color_matcher import ColorMatcher
from color_matcher.normalizer import Normalizer
import torch
# Load the LangSAM model
model = LangSAM() # Use the default model or specify custom checkpoint if necessary
def extract_masks(image_pil, prompts):
prompts_list = [p.strip() for p in prompts.split(',') if p.strip()]
masks_dict = {}
for prompt in prompts_list:
masks, boxes, phrases, logits = model.predict(image_pil, prompt)
if masks:
masks_np = masks[0].cpu().numpy()
mask = (masks_np > 0).astype(np.uint8) * 255 # Binary mask
masks_dict[prompt] = mask
return masks_dict
def apply_color_matching(source_img_np, ref_img_np):
# Initialize ColorMatcher
cm = ColorMatcher()
# Apply color matching
img_res = cm.transfer(src=source_img_np, ref=ref_img_np, method='mkl')
# Normalize the result
img_res = Normalizer(img_res).uint8_norm()
return img_res
def process_image(current_image_pil, selected_prompt, masks_dict, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history):
# Check if current_image_pil is None
if current_image_pil is None:
return None, "No current image to edit.", image_history, None
if not apply_replacement and not apply_color_grading:
return current_image_pil, "No changes applied. Please select at least one operation.", image_history, current_image_pil
if apply_replacement and replacement_image_pil is None:
return current_image_pil, "Replacement image not provided.", image_history, current_image_pil
if apply_color_grading and color_ref_image_pil is None:
return current_image_pil, "Color reference image not provided.", image_history, current_image_pil
# Get the mask from masks_dict
if selected_prompt not in masks_dict:
return current_image_pil, f"No mask available for selected segment: {selected_prompt}", image_history, current_image_pil
mask = masks_dict[selected_prompt]
# Save current image to history for undo
if image_history is None:
image_history = []
image_history.append(current_image_pil.copy())
# Proceed with replacement or color matching
current_image_np = np.array(current_image_pil)
result_image_np = current_image_np.copy()
# Create mask with blending
# First, normalize mask to range [0,1]
mask_normalized = mask.astype(np.float32) / 255.0
# Apply blending by blurring the mask
if blending_amount > 0:
# The kernel size for blurring; larger blending_amount means more blur
kernel_size = int(blending_amount)
if kernel_size % 2 == 0:
kernel_size += 1 # Kernel size must be odd
mask_blurred = cv2.GaussianBlur(mask_normalized, (kernel_size, kernel_size), 0)
else:
mask_blurred = mask_normalized
# Convert mask to 3 channels
mask_blurred_3ch = cv2.merge([mask_blurred, mask_blurred, mask_blurred])
# If apply replacement
if apply_replacement:
# Resize replacement image to match current image
replacement_image_resized = replacement_image_pil.resize(current_image_pil.size)
replacement_image_np = np.array(replacement_image_resized)
# Blend the replacement image with the current image using the mask
result_image_np = (replacement_image_np.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8)
# If apply color grading
if apply_color_grading:
# Convert color reference image to numpy
color_ref_image_np = np.array(color_ref_image_pil)
if apply_color_to_full_image:
# Apply color matching to the full image
color_matched_image = apply_color_matching(result_image_np, color_ref_image_np)
result_image_np = color_matched_image
else:
# Apply color matching only to the masked area
# Extract the masked area
masked_region = (result_image_np.astype(np.float32) * mask_blurred_3ch).astype(np.uint8)
# Apply color matching
color_matched_region = apply_color_matching(masked_region, color_ref_image_np)
# Blend the color matched region back into the result image
result_image_np = (color_matched_region.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8)
# Convert result back to PIL Image
result_image_pil = Image.fromarray(result_image_np)
# Update current_image_pil
current_image_pil = result_image_pil
return current_image_pil, f"Applied changes to '{selected_prompt}'", image_history, current_image_pil
def undo(image_history):
if image_history and len(image_history) > 1:
# Pop the last image
image_history.pop()
# Return the previous image
current_image_pil = image_history[-1]
return current_image_pil, image_history, current_image_pil
elif image_history and len(image_history) == 1:
current_image_pil = image_history[0]
return current_image_pil, image_history, current_image_pil
else:
# Cannot undo
return None, [], None
def gradio_interface():
with gr.Blocks() as demo:
# Define the state variables
image_history = gr.State([])
current_image_pil = gr.State(None)
masks_dict = gr.State({}) # Store masks for each prompt
gr.Markdown("## Continuous Image Editing with LangSAM")
with gr.Row():
with gr.Column():
initial_image = gr.Image(type="pil", label="Upload Image")
prompts = gr.Textbox(lines=1, placeholder="Enter prompts separated by commas (e.g., sky, grass)", label="Prompts")
segment_button = gr.Button("Segment Image")
segment_dropdown = gr.Dropdown(label="Select Segment", choices=[])
replacement_image = gr.Image(type="pil", label="Replacement Image (optional)")
color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)")
apply_replacement = gr.Checkbox(label="Apply Replacement", value=False)
apply_color_grading = gr.Checkbox(label="Apply Color Grading", value=False)
apply_color_to_full_image = gr.Checkbox(label="Apply Color Correction to Full Image", value=False)
blending_amount = gr.Slider(minimum=0, maximum=50, step=1, label="Blending Amount", value=0)
apply_button = gr.Button("Apply Changes")
undo_button = gr.Button("Undo")
with gr.Column():
current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False)
status = gr.Textbox(lines=2, interactive=False, label="Status")
def initialize_image(initial_image_pil):
# Initialize image history with the initial image
if initial_image_pil is not None:
image_history = [initial_image_pil]
current_image_pil = initial_image_pil
return current_image_pil, image_history, initial_image_pil, {}, [], "Image loaded."
else:
return None, [], None, {}, [], "No image loaded."
# When the initial image is uploaded, initialize the image history
initial_image.upload(fn=initialize_image, inputs=initial_image, outputs=[current_image_pil, image_history, current_image_display, masks_dict, segment_dropdown, status])
# Segment button click
def segment_image_wrapper(current_image_pil, prompts):
if current_image_pil is None:
return "No image uploaded.", {}, []
masks = extract_masks(current_image_pil, prompts)
if not masks:
return "No masks detected for the given prompts.", {}, []
dropdown_choices = list(masks.keys())
return "Segmentation completed.", masks, gr.Dropdown.update(choices=dropdown_choices, value=dropdown_choices[0])
segment_button.click(fn=segment_image_wrapper, inputs=[current_image_pil, prompts], outputs=[status, masks_dict, segment_dropdown])
# Apply button click
apply_button.click(fn=process_image,
inputs=[current_image_pil, segment_dropdown, masks_dict, replacement_image, color_ref_image, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history],
outputs=[current_image_pil, status, image_history, current_image_display])
# Undo button click
undo_button.click(fn=undo, inputs=image_history, outputs=[current_image_pil, image_history, current_image_display])
demo.launch(share=True)
# Run the Gradio Interface
if __name__ == "__main__":
gradio_interface()
|