File size: 21,751 Bytes
d7dc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c114fc1
 
 
 
 
 
 
 
 
d7dc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e2c8a0
 
 
d7dc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c114fc1
 
91e2918
c114fc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67e558e
25414e5
c114fc1
25414e5
 
c114fc1
 
 
 
 
 
 
 
 
 
 
d7dc7e0
c114fc1
d7dc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07bfeb2
d7dc7e0
 
 
 
c114fc1
 
d7dc7e0
 
 
 
 
 
 
 
 
 
 
c114fc1
 
 
d7dc7e0
 
 
 
 
 
 
 
c114fc1
d7dc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c114fc1
 
 
25414e5
07bfeb2
c114fc1
 
 
25414e5
d7dc7e0
25414e5
dafc314
07bfeb2
d7dc7e0
c114fc1
 
 
d7dc7e0
c114fc1
 
 
 
d7dc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07bfeb2
d7dc7e0
 
 
 
 
 
 
 
25414e5
07bfeb2
d7dc7e0
 
b4bff08
d7dc7e0
 
25414e5
d7dc7e0
 
 
 
 
 
 
 
 
 
 
07bfeb2
d7dc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07bfeb2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# import streamlit as st
# import os
# import pandas as pd
# import random
# from os.path import join
# from src import preprocess_and_load_df, load_agent, ask_agent, decorate_with_code, show_response, get_from_user, load_smart_df, ask_question
# from dotenv import load_dotenv
# from langchain_groq.chat_models import ChatGroq

# load_dotenv("Groq.txt")
# Groq_Token = os.environ["GROQ_API_KEY"]
# models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it"}

# self_path = os.path.dirname(os.path.abspath(__file__))

# # Using HTML and CSS to center the title
# st.write(
#     """
#     <style>
#     .title {
#         text-align: center;
#         color: #17becf;
#     }
# """,
#     unsafe_allow_html=True,
# )

# # Displaying the centered title
# st.markdown("<h2 class='title'>VayuBuddy</h2>", unsafe_allow_html=True)
# st.markdown("<div style='text-align:center; padding: 20px;'>VayuBuddy makes pollution monitoring easier by bridging the gap between users and datasets.<br>No coding required—just meaningful insights at your fingertips!</div>", unsafe_allow_html=True)

# # Center-aligned instruction text with bold formatting
# st.markdown("<div style='text-align:center;'>Choose a query from <b>Select a prompt</b> or type a query in the <b>chat box</b>, select a <b>LLM</b> (Large Language Model), and press enter to generate a response.</div>", unsafe_allow_html=True)
# # os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"

# # with open(join(self_path, "context1.txt")) as f:
# #     context = f.read().strip()

# # agent = load_agent(join(self_path, "app_trial_1.csv"), context)
# # df = preprocess_and_load_df(join(self_path, "Data.csv"))
# # inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
# # inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf"
# # inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm"

# model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "gemma"])

# questions = ('Custom Prompt',
#              'Plot the monthly average PM2.5 for the year 2023.',
#              'Which month in which year has the highest average PM2.5 overall?',
#              'Which month in which year has the highest PM2.5 overall?',
#              'Which month has the highest average PM2.5 in 2023 for Mumbai?',
#              'Plot and compare monthly timeseries of pollution for Mumbai and Bengaluru.',
#              'Plot the yearly average PM2.5.',
#              'Plot the monthly average PM2.5 of Delhi, Mumbai and Bengaluru for the year 2022.',
#              'Which month has the highest pollution?',
#              'Which city has the highest PM2.5 level in July 2022?',
#              'Plot and compare monthly timeseries of PM2.5 for Mumbai and Bengaluru.',
#              'Plot and compare the monthly average PM2.5 of Delhi, Mumbai and Bengaluru for the year 2022.',
#              'Plot the monthly average PM2.5.',
#              'Plot the monthly average PM10 for the year 2023.',
#              'Which (month, year) has the highest PM2.5?',
#              'Plot the monthly average PM2.5 of Delhi for the year 2022.',
#              'Plot the monthly average PM2.5 of Bengaluru for the year 2022.',
#              'Plot the monthly average PM2.5 of Mumbai for the year 2022.',
#              'Which state has the highest average PM2.5?',
#              'Plot monthly PM2.5 in Gujarat for 2023.',
#              'What is the name of the month with the highest average PM2.5 overall?')

# waiting_lines = ("Thinking...", "Just a moment...", "Let me think...", "Working on it...", "Processing...", "Hold on...", "One moment...", "On it...")

# # agent = load_agent(df, context="", inference_server=inference_server, name=model_name)

# # Initialize chat history
# if "responses" not in st.session_state:
#     st.session_state.responses = []

# # Display chat responses from history on app rerun
# for response in st.session_state.responses:
#     if not response["no_response"]:
#         show_response(st, response)

# show = True

# if prompt := st.sidebar.selectbox("Select a Prompt:", questions):

#     # add a note "select custom prompt to ask your own question"
#     st.sidebar.info("Select 'Custom Prompt' to ask your own question.")

#     if prompt == 'Custom Prompt':
#         show = False
#         # React to user input
#         prompt = st.chat_input("Ask me anything about air quality!", key=10)
#         if prompt : show = True   
#     if show :
        
#         # Add user input to chat history
#         response = get_from_user(prompt)
#         response["no_response"] = False
#         st.session_state.responses.append(response)
        
#         # Display user input
#         show_response(st, response)

#         no_response = False

#         # select random waiting line
#         with st.spinner(random.choice(waiting_lines)):
#             ran = False
#             for i in range(1):
#                 print(f"Attempt {i+1}")
#                 llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0)

#                 df_check = pd.read_csv("Data.csv")
#                 df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
#                 df_check = df_check.head(5)

#                 new_line = "\n"

#                 parameters = {"font.size": 12}

#                 template = f"""```python
# import pandas as pd
# import matplotlib.pyplot as plt

# # plt.rcParams.update({parameters})

# df = pd.read_csv("Data.csv")
# df["Timestamp"] = pd.to_datetime(df["Timestamp"])

# import geopandas as gpd
# india = gpd.read_file("https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a42ebb9b765c0a36/india_states.geojson") 
# india.loc[india['ST_NM'].isin(['Ladakh', 'Jammu & Kashmir']), 'ST_NM'] = 'Jammu and Kashmir'

# # df.dtypes
# {new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}

# # {prompt.strip()}
# # <your code here>
# ```
# """

#                 query = f"""I have a pandas dataframe data of PM2.5 and PM10.
#                 * The columns are 'Timestamp', 'station', 'PM2.5', 'PM10', 'address', 'city', 'latitude', 'longitude',and 'state'.
#                 * Frequency of data is daily.
#                 * `pollution` generally means `PM2.5`.
#                 * You already have df, so don't read the csv file 
#                 * Don't print anything, but save result in a variable `answer` and make it global.
#                 * Unless explicitly mentioned, don't consider the result as a plot.
#                 * PM2.5 guidelines: India: 60, WHO: 15.
#                 * PM10 guidelines: India: 100, WHO: 50.
# 				* If result is a plot, show the India and WHO guidelines in the plot.
#                 * If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'`
#                 * If result is a plot, rotate x-axis tick labels by 45 degrees,
#                 * If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'`
#                 * I have a geopandas.geodataframe india containining the coordinates required to plot Indian Map with states.
#                 * If the query asks you to plot on India Map, use that geodataframe to plot and then add more points as per the requirements using the similar code as follows : v = ax.scatter(df['longitude'], df['latitude']). If the colorbar is required, use the following code : plt.colorbar(v)
#                 * If the query asks you to plot on India Map plot the India Map in Beige color 
#                 * Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points for that aggregation.
#                 * Whenever you're reporting a floating point number, round it to 2 decimal places.
#                 * Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³`
                
#                 Complete the following code.

#                 {template}

#                 """
#                 answer = None
#                 code = None
#                 try:
#                     answer = llm.invoke(query)
#                     code = f"""
#                     {template.split("```python")[1].split("```")[0]}
#                     {answer.content.split("```python")[1].split("```")[0]}
#                     """
#                     # update variable `answer` when code is executed
#                     exec(code)
#                     ran = True
#                     no_response = False
#                 except Exception as e:
#                     no_response = True
#                     exception = e
#                     if code is not None:
#                         answer = f"!!!Faced an error while working on your query. Please try again!!!"
                
#                 if type(answer) != str:
#                     answer = f"!!!Faced an error while working on your query. Please try again!!!"
                
#                 response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": prompt, "no_response": no_response}

#                 # Get response from agent
#                 # response = ask_question(model_name=model_name, question=prompt)
#                 # response = ask_agent(agent, prompt)

#                 if ran:
#                     break  
            
#         # Display agent response
#         if code is not None:
#             # Add agent response to chat history
#             print("Adding response")
            
#             st.session_state.responses.append(response)
#             show_response(st, response)

#         if no_response:
#             print("No response")
#             st.error(f"Failed to generate right output due to the following error:\n\n{exception}")

        

#         prompt = 'Custom Prompt'





####################################################Added User Feedback###################################################

import streamlit as st
import os
import pandas as pd
import random
from os.path import join
from src import preprocess_and_load_df, load_agent, ask_agent, decorate_with_code, show_response, get_from_user, load_smart_df, ask_question
from dotenv import load_dotenv
from langchain_groq.chat_models import ChatGroq


from datasets import Dataset, load_dataset, concatenate_datasets
import streamlit as st
from streamlit_feedback import streamlit_feedback
import uuid

from huggingface_hub import login, HfFolder
import os

# Set the token
token = os.getenv("HF_TOKEN")  # Replace "YOUR_AUTHENTICATION_TOKEN" with your actual token

# Login using the token

login(token=token)

model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "gemma"])

contact_details = """
**Feel free to reach out to us:**
- [Nipun Batra](mailto:[email protected])
- [Zeel B Patel](mailto:[email protected])
- [Yash J Bachwana](mailto:[email protected])
"""
for _ in range(12):
    st.sidebar.markdown(" ")

# Display contact details with message
st.sidebar.markdown("<hr>", unsafe_allow_html=True)
st.sidebar.markdown(contact_details, unsafe_allow_html=True)

# Function to push feedback data to Hugging Face Hub dataset
def push_to_dataset(feedback, comments,output,code,error):
    # Load existing dataset or create a new one if it doesn't exist
    try:
        ds = load_dataset("YashB1/Feedbacks_eoc", split="evaluation")
    except FileNotFoundError:
        # If dataset doesn't exist, create a new one
        ds = Dataset.from_dict({"feedback": [], "comments": [], "error": [], "output": [], "code": []})

    # Add new feedback to the dataset
    new_data = {"feedback": [feedback], "comments": [comments], "error": [error], "output": [output], "code": [code]}  # Convert feedback and comments to lists
    new_data = Dataset.from_dict(new_data)  

    ds = concatenate_datasets([ds, new_data])

    # Push the updated dataset to Hugging Face Hub
    ds.push_to_hub("YashB1/Feedbacks_eoc", split="evaluation")



load_dotenv("Groq.txt")
Groq_Token = os.environ["GROQ_API_KEY"]
models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it"}

self_path = os.path.dirname(os.path.abspath(__file__))

# Using HTML and CSS to center the title
st.write(
    """
    <style>
    .title {
        text-align: center;
        color: #17becf;
    }
""",
    unsafe_allow_html=True,
)

# Displaying the centered title
st.markdown("<h2 class='title'>VayuBuddy</h2>", unsafe_allow_html=True)
st.markdown("<div style='text-align:center; padding: 20px;'>VayuBuddy makes pollution monitoring easier by bridging the gap between users and datasets.<br>No coding required—just meaningful insights at your fingertips!</div>", unsafe_allow_html=True)

# Center-aligned instruction text with bold formatting
st.markdown("<div style='text-align:center;'>Choose a query from <b>Select a prompt</b> or type a query in the <b>chat box</b>, select a <b>LLM</b> (Large Language Model), and press enter to generate a response.</div>", unsafe_allow_html=True)
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"

# with open(join(self_path, "context1.txt")) as f:
#     context = f.read().strip()

# agent = load_agent(join(self_path, "app_trial_1.csv"), context)
# df = preprocess_and_load_df(join(self_path, "Data.csv"))
# inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
# inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf"
# inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm"

# model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "gemma"])


if 'question_state' not in st.session_state:
    st.session_state.question_state = False

if 'fbk' not in st.session_state:
    st.session_state.fbk = str(uuid.uuid4())

if 'feedback' not in st.session_state:
    st.session_state.feedback = None

if "chat_history" not in st.session_state:
    st.session_state.chat_history = []


def display_answer():
    for entry in st.session_state.chat_history:
        with st.chat_message("human"):
            st.write(entry["question"])
        
            # st.write(entry["answer"])
            # print(entry["answer"])
        show_response(st, entry["answer"])



def fbcb(response):
    """Update the history with feedback.
    
    The question and answer are already saved in history.
    Now we will add the feedback in that history entry.
    """
    
    display_answer()  # display hist

    # Create a new feedback by changing the key of feedback component.
    st.session_state.fbk = str(uuid.uuid4())



question = st.chat_input(placeholder="Ask your question here .... !!!!")
if question:
    # We need this because of feedback. That question above
    # is a stopper. If user hits the feedback button, streamlit
    # reruns the code from top and we cannot enter back because
    # of that chat_input.
    st.session_state.prompt = question
    st.session_state.question_state = True




# We are now free because st.session_state.question_state is True.
# But there are consequences. We will have to handle
# the double runs of create_answer() and display_answer()
# just to get the user feedback. 
if st.session_state.question_state:
    
    waiting_lines = ("Thinking...", "Just a moment...", "Let me think...", "Working on it...", "Processing...", "Hold on...", "One moment...", "On it...")
    with st.spinner(random.choice(waiting_lines)):
        ran = False
        for i in range(5):
            print(f"Attempt {i+1}")
            llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0)

            df_check = pd.read_csv("Data.csv")
            df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
            df_check = df_check.head(5)

            new_line = "\n"

            parameters = {"font.size": 12}
            # If the query asks you to make a gif/animation, don't use savefig to save it. Instead use ani.save(answer, writer='pillow'). 
            # If the query asks you to make a gif/animation, don't use colormaps .

            template = f"""```python
import pandas as pd
import matplotlib.pyplot as plt

# plt.rcParams.update({parameters})

df = pd.read_csv("Data.csv")
df["Timestamp"] = pd.to_datetime(df["Timestamp"])

import geopandas as gpd
file_path = "india_states.geojson"
india = gpd.read_file("https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a42ebb9b765c0a36/india_states.geojson") 
india.loc[india['ST_NM'].isin(['Ladakh', 'Jammu & Kashmir']), 'ST_NM'] = 'Jammu and Kashmir'


# df.dtypes
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}

# {st.session_state.prompt.strip()}
# <your code here>
```
"""

            query = f"""I have a pandas dataframe data of PM2.5 and PM10.
            * The columns are 'Timestamp', 'station', 'PM2.5', 'PM10', 'address', 'city', 'latitude', 'longitude',and 'state'.
            * Frequency of data is daily.
            * `pollution` generally means `PM2.5`.
            * You already have df, so don't read the csv file 
            * Don't print anything, but save result in a variable `answer` and make it global.
            * Unless explicitly mentioned, don't consider the result as a plot.
            * PM2.5 guidelines: India: 60, WHO: 15.
            * PM10 guidelines: India: 100, WHO: 50.
            * If query asks to plot calendarmap, use library calmap.
            * If result is a plot, show the India and WHO guidelines in the plot.
            * If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'`
            * If result is a plot, rotate x-axis tick labels by 45 degrees,
            * If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'`
            * I have a geopandas.geodataframe india containining the coordinates required to plot Indian Map with states.
            * If the query asks you to plot on India Map, use that geodataframe to plot and then add more points as per the requirements using the similar code as follows : v = ax.scatter(df['longitude'], df['latitude']). If the colorbar is required, use the following code : plt.colorbar(v)
            * If the query asks you to plot on India Map plot the India Map in Beige color 
            * Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points for that aggregation.
            * Whenever you're reporting a floating point number, round it to 2 decimal places.
            * Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³`
            
            Complete the following code.

            {template}

            """
            answer = None
            code = None
            exception = None
            try:
                answer = llm.invoke(query)
                code = f"""
                {template.split("```python")[1].split("```")[0]}
                {answer.content.split("```python")[1].split("```")[0]}
                """
                # update variable `answer` when code is executed
                exec(code)
                ran = True
                no_response = False
            except Exception as e:
                no_response = True
                exception = e
                if code is not None:
                    answer = f"!!!Faced an error while working on your query. Please try again!!!"
            
            if type(answer) != str:
                answer = f"!!!Faced an error while working on your query. Please try again!!!"
            
            response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": st.session_state.prompt, "no_response": no_response,"exception": exception}
            # print(response)

            if ran:
                break  
        
    # Display agent response
    if code is not None:
        # Add agent response to chat history
        if response['content'][-4:] == ".gif" : 
            # Provide a button to show the gif, we don't want it to run forever
            st.image(response['content'], use_column_width=True)
            response['content'] = ""
            
        
        print("Adding response : ")
        

        message_id = len(st.session_state.chat_history)
        st.session_state.chat_history.append({
            "question": st.session_state.prompt,
            "answer": response,
            "message_id": message_id,
        })
        display_answer()


    if no_response:
        print("No response")
        st.error(f"Failed to generate right output due to the following error:\n\n{exception}")


    # display_answer()
    # Pressing a button in feedback reruns the code.
    st.session_state.feedback = streamlit_feedback(
        feedback_type="thumbs",
        optional_text_label="[Optional]",
        align="flex-start",
        key=st.session_state.fbk,
        on_submit=fbcb
    )
    print("FeedBack",st.session_state.feedback)
    if st.session_state.feedback : 
        push_to_dataset(st.session_state.feedback['score'],st.session_state.feedback['text'],answer,code,exception)
        st.success("Feedback submitted successfully!")