Added AQI Calculator in the chat directly and made some tine changes
Browse files
app.py
CHANGED
@@ -26,7 +26,7 @@ st.write(
|
|
26 |
)
|
27 |
|
28 |
# Displaying the centered title
|
29 |
-
st.markdown("<h2 class='title'>
|
30 |
|
31 |
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
|
32 |
|
@@ -80,49 +80,97 @@ for response in st.session_state.responses:
|
|
80 |
|
81 |
show = True
|
82 |
|
83 |
-
prompt
|
84 |
-
|
85 |
-
# add a note "select custom prompt to ask your own question"
|
86 |
-
|
87 |
-
|
88 |
-
if prompt == 'Custom Prompt':
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
# Add user input to chat history
|
98 |
-
response = get_from_user(prompt)
|
99 |
-
response["no_response"] = False
|
100 |
-
st.session_state.responses.append(response)
|
101 |
-
|
102 |
-
# Display user input
|
103 |
-
show_response(st, response)
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
for i in range(5):
|
111 |
-
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0.1)
|
112 |
|
113 |
-
|
114 |
-
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
|
115 |
-
df_check = df_check.head(5)
|
116 |
|
117 |
-
|
118 |
|
119 |
-
|
120 |
import pandas as pd
|
121 |
import matplotlib.pyplot as plt
|
122 |
|
|
|
|
|
123 |
df = pd.read_csv("Data.csv")
|
124 |
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
# df.dtypes
|
127 |
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
|
128 |
|
@@ -131,117 +179,57 @@ df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
|
131 |
```
|
132 |
"""
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
# response = ask_agent(agent, prompt)
|
177 |
-
|
178 |
-
if ran:
|
179 |
-
break
|
180 |
-
|
181 |
-
if no_response:
|
182 |
-
st.error(f"Failed to generate right output due to the following error:\n\n{exception}")
|
183 |
-
# Add agent response to chat history
|
184 |
-
st.session_state.responses.append(response)
|
185 |
-
|
186 |
-
# Display agent response
|
187 |
-
if not no_response:
|
188 |
-
show_response(st, response)
|
189 |
-
|
190 |
-
del prompt
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
st.sidebar.info("\nCalculator")
|
195 |
-
Pollutant = ["O3", "PM2.5", "PM10", "CO", "SO2", "NO2"]
|
196 |
-
Calculator_index = st.sidebar.selectbox("Select a Prompt:", Pollutant)
|
197 |
-
|
198 |
-
if Calculator_index:
|
199 |
-
concentration = st.sidebar.number_input(f"Enter {Calculator_index} concentration (µg/m³):")
|
200 |
-
calculate_button = st.sidebar.button("Calculate")
|
201 |
-
if concentration:
|
202 |
-
if calculate_button:
|
203 |
-
# Define breakpoints and AQI categories for the selected pollutant
|
204 |
-
breakpoints_low = {
|
205 |
-
"O3": [0, 50, 100, 168, 208, 748],
|
206 |
-
"PM2.5": [0, 30, 60, 90, 120, 250],
|
207 |
-
"PM10": [0, 50, 100, 250, 350, 430],
|
208 |
-
"CO": [0, 1000, 2000, 10000, 17000, 34000],
|
209 |
-
"SO2": [0, 40, 80, 380, 800, 1600],
|
210 |
-
"NO2": [0, 40, 80, 180, 280, 400]
|
211 |
-
}
|
212 |
-
|
213 |
-
breakpoints_high = {
|
214 |
-
"O3": [50, 100, 168, 208, 748,1000],
|
215 |
-
"PM2.5": [30, 60, 90, 120, 250,1000],
|
216 |
-
"PM10": [50, 100, 250, 350, 430,1000],
|
217 |
-
"CO": [1000, 2000, 10000, 17000, 34000,50000],
|
218 |
-
"SO2": [40, 80, 380, 800, 1600,2000],
|
219 |
-
"NO2": [ 40, 80, 180, 280, 400,1000]
|
220 |
-
}
|
221 |
-
# Define corresponding AQI categories
|
222 |
-
categories_low= [0, 50, 100, 200, 300, 400]
|
223 |
-
categories_high = [50, 100, 200, 300, 400,500]
|
224 |
-
|
225 |
-
# Find the appropriate AQI category based on concentration
|
226 |
-
|
227 |
-
for i in range(len(breakpoints_high[Calculator_index])):
|
228 |
-
if concentration <= breakpoints_high[Calculator_index][i]:
|
229 |
-
BPHI = breakpoints_high[Calculator_index][i]
|
230 |
-
IHI = categories_high[i]
|
231 |
-
# Calculate AQI using India formula
|
232 |
-
#AQI = ((categories[i] - categories[i-1]) / (breakpoints[Calculator_index][i] - breakpoints[Calculator_index][i-1])) * (concentration - breakpoints[Calculator_index][i-1]) + categories[i-1]
|
233 |
-
#st.sidebar.write(f"The Air Quality Index (AQI) for {Calculator_index} is: {AQI}")
|
234 |
-
break
|
235 |
-
|
236 |
-
for i in range(len(breakpoints_low[Calculator_index])):
|
237 |
-
if concentration >= breakpoints_low[Calculator_index][i]:
|
238 |
-
BPLI = breakpoints_low[Calculator_index][i]
|
239 |
-
ILI = categories_low[i]
|
240 |
-
# Calculate AQI using India formula
|
241 |
-
#AQI = ((categories[i] - categories[i-1]) / (breakpoints[Calculator_index][i] - breakpoints[Calculator_index][i-1])) * (concentration - breakpoints[Calculator_index][i-1]) + categories[i-1]
|
242 |
-
#st.sidebar.write(f"The Air Quality Index (AQI) for {Calculator_index} is: {AQI}")
|
243 |
break
|
244 |
-
|
245 |
-
|
246 |
-
st.
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
|
28 |
# Displaying the centered title
|
29 |
+
st.markdown("<h2 class='title'>GovBuddy</h2>", unsafe_allow_html=True)
|
30 |
|
31 |
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
|
32 |
|
|
|
80 |
|
81 |
show = True
|
82 |
|
83 |
+
if prompt := st.sidebar.selectbox("Select a Prompt:", questions):
|
84 |
+
|
85 |
+
# add a note "select custom prompt to ask your own question"
|
86 |
+
st.sidebar.info("Select 'Custom Prompt' to ask your own question.")
|
87 |
+
|
88 |
+
if prompt == 'Custom Prompt':
|
89 |
+
show = False
|
90 |
+
# React to user input
|
91 |
+
prompt = st.chat_input("Ask me anything about air quality!", key=10)
|
92 |
+
if prompt : show = True
|
93 |
+
if show :
|
94 |
+
|
95 |
+
# Add user input to chat history
|
96 |
+
response = get_from_user(prompt)
|
97 |
+
response["no_response"] = False
|
98 |
+
st.session_state.responses.append(response)
|
99 |
+
|
100 |
+
# Display user input
|
101 |
+
show_response(st, response)
|
102 |
|
103 |
+
no_response = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
# select random waiting line
|
106 |
+
with st.spinner(random.choice(waiting_lines)):
|
107 |
+
ran = False
|
108 |
+
for i in range(5):
|
109 |
+
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0.1)
|
110 |
|
111 |
+
df_check = pd.read_csv("Data.csv")
|
112 |
+
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
|
113 |
+
df_check = df_check.head(5)
|
|
|
|
|
114 |
|
115 |
+
new_line = "\n"
|
|
|
|
|
116 |
|
117 |
+
parameters = {"font.size": 18}
|
118 |
|
119 |
+
template = f"""```python
|
120 |
import pandas as pd
|
121 |
import matplotlib.pyplot as plt
|
122 |
|
123 |
+
plt.rcParams.update({parameters})
|
124 |
+
|
125 |
df = pd.read_csv("Data.csv")
|
126 |
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
127 |
|
128 |
+
def calculator(Pollutant, concentration):
|
129 |
+
Calculator_index = Pollutant
|
130 |
+
breakpoints_low = {{
|
131 |
+
"O3": [0, 50, 100, 168, 208, 748],
|
132 |
+
"PM2.5": [0, 30, 60, 90, 120, 250],
|
133 |
+
"PM10": [0, 50, 100, 250, 350, 430],
|
134 |
+
"CO": [0, 1000, 2000, 10000, 17000, 34000],
|
135 |
+
"SO2": [0, 40, 80, 380, 800, 1600],
|
136 |
+
"NO2": [0, 40, 80, 180, 280, 400]
|
137 |
+
}}
|
138 |
+
|
139 |
+
breakpoints_high = {{
|
140 |
+
"O3": [50, 100, 168, 208, 748,1000],
|
141 |
+
"PM2.5": [30, 60, 90, 120, 250,1000],
|
142 |
+
"PM10": [50, 100, 250, 350, 430,1000],
|
143 |
+
"CO": [1000, 2000, 10000, 17000, 34000,50000],
|
144 |
+
"SO2": [40, 80, 380, 800, 1600,2000],
|
145 |
+
"NO2": [ 40, 80, 180, 280, 400,1000]
|
146 |
+
}}
|
147 |
+
# Define corresponding AQI categories
|
148 |
+
categories_low= [0, 50, 100, 200, 300, 400]
|
149 |
+
categories_high = [50, 100, 200, 300, 400,500]
|
150 |
+
|
151 |
+
# Find the appropriate AQI category based on concentration
|
152 |
+
|
153 |
+
for i in range(len(breakpoints_high[Calculator_index])):
|
154 |
+
if concentration <= breakpoints_high[Calculator_index][i]:
|
155 |
+
BPHI = breakpoints_high[Calculator_index][i]
|
156 |
+
IHI = categories_high[i]
|
157 |
+
# Calculate AQI using India formula
|
158 |
+
#AQI = ((categories[i] - categories[i-1]) / (breakpoints[Calculator_index][i] - breakpoints[Calculator_index][i-1])) * (concentration - breakpoints[Calculator_index][i-1]) + categories[i-1]
|
159 |
+
#st.sidebar.write(f"The Air Quality Index (AQI) for {{Calculator_index}} is: {{AQI}}")
|
160 |
+
break
|
161 |
+
|
162 |
+
for i in range(len(breakpoints_low[Calculator_index])):
|
163 |
+
if concentration >= breakpoints_low[Calculator_index][i]:
|
164 |
+
BPLI = breakpoints_low[Calculator_index][i]
|
165 |
+
ILI = categories_low[i]
|
166 |
+
# Calculate AQI using India formula
|
167 |
+
#AQI = ((categories[i] - categories[i-1]) / (breakpoints[Calculator_index][i] - breakpoints[Calculator_index][i-1])) * (concentration - breakpoints[Calculator_index][i-1]) + categories[i-1]
|
168 |
+
#st.sidebar.write(f"The Air Quality Index (AQI) for {{Calculator_index}} is: {{AQI}}")
|
169 |
+
break
|
170 |
+
|
171 |
+
AQI = ((IHI - ILI) / (BPHI - BPLI)) * (round(concentration) - BPLI) + ILI
|
172 |
+
return AQI
|
173 |
+
|
174 |
# df.dtypes
|
175 |
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
|
176 |
|
|
|
179 |
```
|
180 |
"""
|
181 |
|
182 |
+
query = f"""I have a pandas dataframe data of PM2.5 and PM10.
|
183 |
+
* Frequency of data is daily.
|
184 |
+
* `pollution` generally means `PM2.5`.
|
185 |
+
* You already have df, so don't read the csv file
|
186 |
+
* Don't print, but save result in a variable `answer` and make it global.
|
187 |
+
* Unless explicitly mentioned, don't consider the result as a plot.
|
188 |
+
* PM2.5 guidelines: India: 60, WHO: 15.
|
189 |
+
* PM10 guidelines: India: 100, WHO: 50.
|
190 |
+
* If result is a plot, show the India and WHO guidelines in the plot.
|
191 |
+
* If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'`
|
192 |
+
* If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'`
|
193 |
+
* Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points.
|
194 |
+
* Whenever you're reporting a floating point number, round it to 2 decimal places.
|
195 |
+
* Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³`
|
196 |
+
|
197 |
+
Complete the following code.
|
198 |
+
|
199 |
+
{template}
|
200 |
+
|
201 |
+
"""
|
202 |
+
|
203 |
+
answer = llm.invoke(query)
|
204 |
+
code = f"""
|
205 |
+
{template.split("```python")[1].split("```")[0]}
|
206 |
+
{answer.content.split("```python")[1].split("```")[0]}
|
207 |
+
"""
|
208 |
+
# update variable `answer` when code is executed
|
209 |
+
try:
|
210 |
+
exec(code)
|
211 |
+
ran = True
|
212 |
+
no_response = False
|
213 |
+
except Exception as e:
|
214 |
+
no_response = True
|
215 |
+
exception = e
|
216 |
+
|
217 |
+
response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": prompt, "no_response": no_response}
|
218 |
+
|
219 |
+
# Get response from agent
|
220 |
+
# response = ask_question(model_name=model_name, question=prompt)
|
221 |
+
# response = ask_agent(agent, prompt)
|
222 |
+
|
223 |
+
if ran:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
break
|
225 |
+
|
226 |
+
if no_response:
|
227 |
+
st.error(f"Failed to generate right output due to the following error:\n\n{exception}")
|
228 |
+
# Add agent response to chat history
|
229 |
+
st.session_state.responses.append(response)
|
230 |
+
|
231 |
+
# Display agent response
|
232 |
+
if not no_response:
|
233 |
+
show_response(st, response)
|
234 |
+
|
235 |
+
del prompt
|