Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,200 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import streamlit as st
|
3 |
import os
|
4 |
import pandas as pd
|
@@ -28,7 +224,10 @@ st.write(
|
|
28 |
|
29 |
# Displaying the centered title
|
30 |
st.markdown("<h2 class='title'>VayuBuddy</h2>", unsafe_allow_html=True)
|
|
|
31 |
|
|
|
|
|
32 |
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
|
33 |
|
34 |
# with open(join(self_path, "context1.txt")) as f:
|
@@ -44,20 +243,19 @@ model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "gemma"])
|
|
44 |
|
45 |
questions = ('Custom Prompt',
|
46 |
'Plot the monthly average PM2.5 for the year 2023.',
|
47 |
-
'Which month has the highest average PM2.5 overall?',
|
48 |
-
'Which month has the highest PM2.5 overall?',
|
49 |
'Which month has the highest average PM2.5 in 2023 for Mumbai?',
|
50 |
'Plot and compare monthly timeseries of pollution for Mumbai and Bengaluru.',
|
51 |
'Plot the yearly average PM2.5.',
|
52 |
'Plot the monthly average PM2.5 of Delhi, Mumbai and Bengaluru for the year 2022.',
|
53 |
'Which month has the highest pollution?',
|
54 |
-
'Plot the monthly average PM2.5 of Delhi for the year 2022.',
|
55 |
'Which city has the highest PM2.5 level in July 2022?',
|
56 |
'Plot and compare monthly timeseries of PM2.5 for Mumbai and Bengaluru.',
|
57 |
'Plot and compare the monthly average PM2.5 of Delhi, Mumbai and Bengaluru for the year 2022.',
|
58 |
'Plot the monthly average PM2.5.',
|
59 |
'Plot the monthly average PM10 for the year 2023.',
|
60 |
-
'Which month has the highest PM2.5?',
|
61 |
'Plot the monthly average PM2.5 of Delhi for the year 2022.',
|
62 |
'Plot the monthly average PM2.5 of Bengaluru for the year 2022.',
|
63 |
'Plot the monthly average PM2.5 of Mumbai for the year 2022.',
|
@@ -105,8 +303,9 @@ if prompt := st.sidebar.selectbox("Select a Prompt:", questions):
|
|
105 |
# select random waiting line
|
106 |
with st.spinner(random.choice(waiting_lines)):
|
107 |
ran = False
|
108 |
-
for i in range(
|
109 |
-
|
|
|
110 |
|
111 |
df_check = pd.read_csv("Data.csv")
|
112 |
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
|
@@ -114,62 +313,19 @@ if prompt := st.sidebar.selectbox("Select a Prompt:", questions):
|
|
114 |
|
115 |
new_line = "\n"
|
116 |
|
117 |
-
parameters = {"font.size":
|
118 |
|
119 |
template = f"""```python
|
120 |
import pandas as pd
|
121 |
import matplotlib.pyplot as plt
|
122 |
|
123 |
-
plt.rcParams.update({parameters})
|
124 |
|
125 |
df = pd.read_csv("Data.csv")
|
126 |
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
breakpoints_low = {{
|
131 |
-
"O3": [0, 50, 100, 168, 208, 748],
|
132 |
-
"PM2.5": [0, 30, 60, 90, 120, 250],
|
133 |
-
"PM10": [0, 50, 100, 250, 350, 430],
|
134 |
-
"CO": [0, 1000, 2000, 10000, 17000, 34000],
|
135 |
-
"SO2": [0, 40, 80, 380, 800, 1600],
|
136 |
-
"NO2": [0, 40, 80, 180, 280, 400]
|
137 |
-
}}
|
138 |
-
|
139 |
-
breakpoints_high = {{
|
140 |
-
"O3": [50, 100, 168, 208, 748,1000],
|
141 |
-
"PM2.5": [30, 60, 90, 120, 250,1000],
|
142 |
-
"PM10": [50, 100, 250, 350, 430,1000],
|
143 |
-
"CO": [1000, 2000, 10000, 17000, 34000,50000],
|
144 |
-
"SO2": [40, 80, 380, 800, 1600,2000],
|
145 |
-
"NO2": [ 40, 80, 180, 280, 400,1000]
|
146 |
-
}}
|
147 |
-
# Define corresponding AQI categories
|
148 |
-
categories_low= [0, 50, 100, 200, 300, 400]
|
149 |
-
categories_high = [50, 100, 200, 300, 400,500]
|
150 |
-
|
151 |
-
# Find the appropriate AQI category based on concentration
|
152 |
-
|
153 |
-
for i in range(len(breakpoints_high[Calculator_index])):
|
154 |
-
if concentration <= breakpoints_high[Calculator_index][i]:
|
155 |
-
BPHI = breakpoints_high[Calculator_index][i]
|
156 |
-
IHI = categories_high[i]
|
157 |
-
# Calculate AQI using India formula
|
158 |
-
#AQI = ((categories[i] - categories[i-1]) / (breakpoints[Calculator_index][i] - breakpoints[Calculator_index][i-1])) * (concentration - breakpoints[Calculator_index][i-1]) + categories[i-1]
|
159 |
-
#st.sidebar.write(f"The Air Quality Index (AQI) for {{Calculator_index}} is: {{AQI}}")
|
160 |
-
break
|
161 |
-
|
162 |
-
for i in range(len(breakpoints_low[Calculator_index])):
|
163 |
-
if concentration >= breakpoints_low[Calculator_index][i]:
|
164 |
-
BPLI = breakpoints_low[Calculator_index][i]
|
165 |
-
ILI = categories_low[i]
|
166 |
-
# Calculate AQI using India formula
|
167 |
-
#AQI = ((categories[i] - categories[i-1]) / (breakpoints[Calculator_index][i] - breakpoints[Calculator_index][i-1])) * (concentration - breakpoints[Calculator_index][i-1]) + categories[i-1]
|
168 |
-
#st.sidebar.write(f"The Air Quality Index (AQI) for {{Calculator_index}} is: {{AQI}}")
|
169 |
-
break
|
170 |
-
|
171 |
-
AQI = ((IHI - ILI) / (BPHI - BPLI)) * (round(concentration) - BPLI) + ILI
|
172 |
-
return AQI
|
173 |
|
174 |
# df.dtypes
|
175 |
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
|
@@ -180,16 +336,21 @@ def calculator(Pollutant, concentration):
|
|
180 |
"""
|
181 |
|
182 |
query = f"""I have a pandas dataframe data of PM2.5 and PM10.
|
|
|
183 |
* Frequency of data is daily.
|
184 |
* `pollution` generally means `PM2.5`.
|
185 |
* You already have df, so don't read the csv file
|
186 |
-
* Don't print, but save result in a variable `answer` and make it global.
|
187 |
* Unless explicitly mentioned, don't consider the result as a plot.
|
188 |
* PM2.5 guidelines: India: 60, WHO: 15.
|
189 |
* PM10 guidelines: India: 100, WHO: 50.
|
190 |
* If result is a plot, show the India and WHO guidelines in the plot.
|
191 |
* If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'`
|
|
|
192 |
* If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'`
|
|
|
|
|
|
|
193 |
* Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points for that aggregation.
|
194 |
* Whenever you're reporting a floating point number, round it to 2 decimal places.
|
195 |
* Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³`
|
@@ -199,21 +360,27 @@ def calculator(Pollutant, concentration):
|
|
199 |
{template}
|
200 |
|
201 |
"""
|
202 |
-
|
203 |
-
|
204 |
-
code = f"""
|
205 |
-
{template.split("```python")[1].split("```")[0]}
|
206 |
-
{answer.content.split("```python")[1].split("```")[0]}
|
207 |
-
"""
|
208 |
-
# update variable `answer` when code is executed
|
209 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
exec(code)
|
211 |
ran = True
|
212 |
no_response = False
|
213 |
except Exception as e:
|
214 |
no_response = True
|
215 |
exception = e
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
217 |
response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": prompt, "no_response": no_response}
|
218 |
|
219 |
# Get response from agent
|
@@ -221,15 +388,19 @@ def calculator(Pollutant, concentration):
|
|
221 |
# response = ask_agent(agent, prompt)
|
222 |
|
223 |
if ran:
|
224 |
-
break
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
if no_response:
|
|
|
227 |
st.error(f"Failed to generate right output due to the following error:\n\n{exception}")
|
228 |
-
|
229 |
-
st.session_state.responses.append(response)
|
230 |
|
231 |
-
# Display agent response
|
232 |
-
if not no_response:
|
233 |
-
show_response(st, response)
|
234 |
|
235 |
-
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import os
|
3 |
+
# import pandas as pd
|
4 |
+
# import random
|
5 |
+
# from os.path import join
|
6 |
+
# from src import preprocess_and_load_df, load_agent, ask_agent, decorate_with_code, show_response, get_from_user, load_smart_df, ask_question
|
7 |
+
# from dotenv import load_dotenv
|
8 |
+
# from langchain_groq.chat_models import ChatGroq
|
9 |
+
|
10 |
+
# load_dotenv("Groq.txt")
|
11 |
+
# Groq_Token = os.environ["GROQ_API_KEY"]
|
12 |
+
# models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it"}
|
13 |
+
|
14 |
+
# self_path = os.path.dirname(os.path.abspath(__file__))
|
15 |
+
|
16 |
+
# # Using HTML and CSS to center the title
|
17 |
+
# st.write(
|
18 |
+
# """
|
19 |
+
# <style>
|
20 |
+
# .title {
|
21 |
+
# text-align: center;
|
22 |
+
# color: #17becf;
|
23 |
+
# }
|
24 |
+
# """,
|
25 |
+
# unsafe_allow_html=True,
|
26 |
+
# )
|
27 |
+
|
28 |
+
# # Displaying the centered title
|
29 |
+
# st.markdown("<h2 class='title'>VayuBuddy</h2>", unsafe_allow_html=True)
|
30 |
+
|
31 |
+
# # os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
|
32 |
+
|
33 |
+
# # with open(join(self_path, "context1.txt")) as f:
|
34 |
+
# # context = f.read().strip()
|
35 |
+
|
36 |
+
# # agent = load_agent(join(self_path, "app_trial_1.csv"), context)
|
37 |
+
# # df = preprocess_and_load_df(join(self_path, "Data.csv"))
|
38 |
+
# # inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
39 |
+
# # inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf"
|
40 |
+
# # inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm"
|
41 |
+
|
42 |
+
# model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "llama2", "gemma"])
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
# questions = ('Custom Prompt',
|
49 |
+
# 'Plot the monthly average PM2.5 for the year 2023.',
|
50 |
+
# 'Which month has the highest average PM2.5 overall?',
|
51 |
+
# 'Which month has the highest PM2.5 overall?',
|
52 |
+
# 'Which month has the highest average PM2.5 in 2023 for Mumbai?',
|
53 |
+
# 'Plot and compare monthly timeseries of pollution for Mumbai and Bengaluru.',
|
54 |
+
# 'Plot the yearly average PM2.5.',
|
55 |
+
# 'Plot the monthly average PM2.5 of Delhi',
|
56 |
+
# 'Mumbai and Bengaluru for the year 2022.',
|
57 |
+
# 'Which month has the highest pollution?',
|
58 |
+
# 'Plot the monthly average PM2.5 of Delhi for the year 2022.',
|
59 |
+
# 'Which city has the highest PM2.5 level in July 2022?',
|
60 |
+
# 'Plot and compare monthly timeseries of PM2.5 for Mumbai and Bengaluru.',
|
61 |
+
# 'Plot and compare the monthly average PM2.5 of Delhi, Mumbai and Bengaluru for the year 2022.',
|
62 |
+
# 'Plot the monthly average PM2.5.',
|
63 |
+
# 'Plot the monthly average PM10 for the year 2023.',
|
64 |
+
# 'Which month has the highest PM2.5?',
|
65 |
+
# 'Plot the monthly average PM2.5 of Delhi for the year 2022.',
|
66 |
+
# 'Plot the monthly average PM2.5 of Bengaluru for the year 2022.',
|
67 |
+
# 'Plot the monthly average PM2.5 of Mumbai for the year 2022.',
|
68 |
+
# 'Which state has the highest average PM2.5?',
|
69 |
+
# 'Plot monthly PM2.5 in Gujarat for 2023.',
|
70 |
+
# 'What is the name of the month with the highest average PM2.5 overall?')
|
71 |
+
|
72 |
+
# waiting_lines = ("Thinking...", "Just a moment...", "Let me think...", "Working on it...", "Processing...", "Hold on...", "One moment...", "On it...")
|
73 |
+
|
74 |
+
# # agent = load_agent(df, context="", inference_server=inference_server, name=model_name)
|
75 |
+
|
76 |
+
# # Initialize chat history
|
77 |
+
# if "responses" not in st.session_state:
|
78 |
+
# st.session_state.responses = []
|
79 |
+
|
80 |
+
# # Display chat responses from history on app rerun
|
81 |
+
# for response in st.session_state.responses:
|
82 |
+
# if not response["no_response"]:
|
83 |
+
# show_response(st, response)
|
84 |
+
|
85 |
+
# show = True
|
86 |
+
|
87 |
+
# prompt = st.sidebar.selectbox("Select a Prompt:", questions)
|
88 |
+
|
89 |
+
# # add a note "select custom prompt to ask your own question"
|
90 |
+
|
91 |
+
|
92 |
+
# if prompt == 'Custom Prompt':
|
93 |
+
# show = False
|
94 |
+
# # React to user input
|
95 |
+
# prompt = st.chat_input("Ask me anything about air quality!", key=10)
|
96 |
+
# if prompt:
|
97 |
+
# show = True
|
98 |
+
|
99 |
+
|
100 |
+
# if show:
|
101 |
+
|
102 |
+
# # Add user input to chat history
|
103 |
+
# response = get_from_user(prompt)
|
104 |
+
# response["no_response"] = False
|
105 |
+
# st.session_state.responses.append(response)
|
106 |
+
|
107 |
+
# # Display user input
|
108 |
+
# show_response(st, response)
|
109 |
+
|
110 |
+
# no_response = False
|
111 |
+
|
112 |
+
# # select random waiting line
|
113 |
+
# with st.spinner(random.choice(waiting_lines)):
|
114 |
+
# ran = False
|
115 |
+
# for i in range(5):
|
116 |
+
# llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0.1)
|
117 |
+
|
118 |
+
# df_check = pd.read_csv("Data.csv")
|
119 |
+
# df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
|
120 |
+
# df_check = df_check.head(5)
|
121 |
+
|
122 |
+
# new_line = "\n"
|
123 |
+
|
124 |
+
# template = f"""```python
|
125 |
+
# import pandas as pd
|
126 |
+
# import matplotlib.pyplot as plt
|
127 |
+
|
128 |
+
# df = pd.read_csv("Data.csv")
|
129 |
+
# df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
130 |
+
|
131 |
+
# # df.dtypes
|
132 |
+
# {new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
|
133 |
+
|
134 |
+
# # {prompt.strip()}
|
135 |
+
# # <your code here>
|
136 |
+
# ```
|
137 |
+
# """
|
138 |
+
|
139 |
+
# query = f"""I have a pandas dataframe data of PM2.5 and PM10.
|
140 |
+
# * Frequency of data is daily.
|
141 |
+
# * `pollution` generally means `PM2.5`.
|
142 |
+
# * You already have df, so don't read the csv file
|
143 |
+
# * Don't print, but save result in a variable `answer` and make it global.
|
144 |
+
# * Unless explicitly mentioned, don't consider the result as a plot.
|
145 |
+
# * PM2.5 guidelines: India: 60, WHO: 15.
|
146 |
+
# * PM10 guidelines: India: 100, WHO: 50.
|
147 |
+
# * If result is a plot, show the India and WHO guidelines in the plot.
|
148 |
+
# * If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'`
|
149 |
+
# * If result is a plot, rotate x-axis tick labels by 45 degrees,
|
150 |
+
# * If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'`
|
151 |
+
# * Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points for that aggregation.
|
152 |
+
# * Whenever you're reporting a floating point number, round it to 2 decimal places.
|
153 |
+
# * Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³`
|
154 |
+
|
155 |
+
|
156 |
+
# Complete the following code.
|
157 |
+
|
158 |
+
# {template}
|
159 |
+
|
160 |
+
# """
|
161 |
+
|
162 |
+
# answer = llm.invoke(query)
|
163 |
+
# code = f"""
|
164 |
+
# {template.split("```python")[1].split("```")[0]}
|
165 |
+
# {answer.content.split("```python")[1].split("```")[0]}
|
166 |
+
# """
|
167 |
+
# # update variable `answer` when code is executed
|
168 |
+
# try:
|
169 |
+
# exec(code)
|
170 |
+
# ran = True
|
171 |
+
# no_response = False
|
172 |
+
# except Exception as e:
|
173 |
+
# no_response = True
|
174 |
+
# exception = e
|
175 |
+
|
176 |
+
# response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": prompt, "no_response": no_response}
|
177 |
+
|
178 |
+
# # Get response from agent
|
179 |
+
# # response = ask_question(model_name=model_name, question=prompt)
|
180 |
+
# # response = ask_agent(agent, prompt)
|
181 |
+
|
182 |
+
# if ran:
|
183 |
+
# break
|
184 |
+
|
185 |
+
# if no_response:
|
186 |
+
# st.error(f"Failed to generate right output due to the following error:\n\n{exception}")
|
187 |
+
# # Add agent response to chat history
|
188 |
+
# st.session_state.responses.append(response)
|
189 |
+
|
190 |
+
# # Display agent response
|
191 |
+
# if not no_response:
|
192 |
+
# show_response(st, response)
|
193 |
+
|
194 |
+
# del prompt
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
import streamlit as st
|
199 |
import os
|
200 |
import pandas as pd
|
|
|
224 |
|
225 |
# Displaying the centered title
|
226 |
st.markdown("<h2 class='title'>VayuBuddy</h2>", unsafe_allow_html=True)
|
227 |
+
st.markdown("<div style='text-align:center; padding: 20px;'>VayuBuddy makes pollution monitoring easier by bridging the gap between users and datasets.<br>No coding required—just meaningful insights at your fingertips!</div>", unsafe_allow_html=True)
|
228 |
|
229 |
+
# Center-aligned instruction text with bold formatting
|
230 |
+
st.markdown("<div style='text-align:center;'>Choose a query from <b>Select a prompt</b> or type a query in the <b>chat box</b>, select a <b>LLM</b> (Large Language Model), and press enter to generate a response.</div>", unsafe_allow_html=True)
|
231 |
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
|
232 |
|
233 |
# with open(join(self_path, "context1.txt")) as f:
|
|
|
243 |
|
244 |
questions = ('Custom Prompt',
|
245 |
'Plot the monthly average PM2.5 for the year 2023.',
|
246 |
+
'Which month in which year has the highest average PM2.5 overall?',
|
247 |
+
'Which month in which year has the highest PM2.5 overall?',
|
248 |
'Which month has the highest average PM2.5 in 2023 for Mumbai?',
|
249 |
'Plot and compare monthly timeseries of pollution for Mumbai and Bengaluru.',
|
250 |
'Plot the yearly average PM2.5.',
|
251 |
'Plot the monthly average PM2.5 of Delhi, Mumbai and Bengaluru for the year 2022.',
|
252 |
'Which month has the highest pollution?',
|
|
|
253 |
'Which city has the highest PM2.5 level in July 2022?',
|
254 |
'Plot and compare monthly timeseries of PM2.5 for Mumbai and Bengaluru.',
|
255 |
'Plot and compare the monthly average PM2.5 of Delhi, Mumbai and Bengaluru for the year 2022.',
|
256 |
'Plot the monthly average PM2.5.',
|
257 |
'Plot the monthly average PM10 for the year 2023.',
|
258 |
+
'Which (month, year) has the highest PM2.5?',
|
259 |
'Plot the monthly average PM2.5 of Delhi for the year 2022.',
|
260 |
'Plot the monthly average PM2.5 of Bengaluru for the year 2022.',
|
261 |
'Plot the monthly average PM2.5 of Mumbai for the year 2022.',
|
|
|
303 |
# select random waiting line
|
304 |
with st.spinner(random.choice(waiting_lines)):
|
305 |
ran = False
|
306 |
+
for i in range(1):
|
307 |
+
print(f"Attempt {i+1}")
|
308 |
+
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0)
|
309 |
|
310 |
df_check = pd.read_csv("Data.csv")
|
311 |
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
|
|
|
313 |
|
314 |
new_line = "\n"
|
315 |
|
316 |
+
parameters = {"font.size": 12}
|
317 |
|
318 |
template = f"""```python
|
319 |
import pandas as pd
|
320 |
import matplotlib.pyplot as plt
|
321 |
|
322 |
+
# plt.rcParams.update({parameters})
|
323 |
|
324 |
df = pd.read_csv("Data.csv")
|
325 |
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
326 |
|
327 |
+
import geopandas as gpd
|
328 |
+
india = gpd.read_file("https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a42ebb9b765c0a36/india_states.geojson")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
# df.dtypes
|
331 |
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
|
|
|
336 |
"""
|
337 |
|
338 |
query = f"""I have a pandas dataframe data of PM2.5 and PM10.
|
339 |
+
* The columns are 'Timestamp', 'station', 'PM2.5', 'PM10', 'address', 'city', 'latitude', 'longitude',and 'state'.
|
340 |
* Frequency of data is daily.
|
341 |
* `pollution` generally means `PM2.5`.
|
342 |
* You already have df, so don't read the csv file
|
343 |
+
* Don't print anything, but save result in a variable `answer` and make it global.
|
344 |
* Unless explicitly mentioned, don't consider the result as a plot.
|
345 |
* PM2.5 guidelines: India: 60, WHO: 15.
|
346 |
* PM10 guidelines: India: 100, WHO: 50.
|
347 |
* If result is a plot, show the India and WHO guidelines in the plot.
|
348 |
* If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'`
|
349 |
+
* If result is a plot, rotate x-axis tick labels by 45 degrees,
|
350 |
* If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'`
|
351 |
+
* I have a geopandas.geodataframe india containining the coordinates required to plot Indian Map with states.
|
352 |
+
* If the query asks you to plot on India Map, use that geodataframe to plot and then add more points as per the requirements using the similar code as follows : v = ax.scatter(df['longitude'], df['latitude']). If the colorbar is required, use the following code : plt.colorbar(v)
|
353 |
+
* If the query asks you to plot on India Map plot the India Map in Beige color
|
354 |
* Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points for that aggregation.
|
355 |
* Whenever you're reporting a floating point number, round it to 2 decimal places.
|
356 |
* Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³`
|
|
|
360 |
{template}
|
361 |
|
362 |
"""
|
363 |
+
answer = None
|
364 |
+
code = None
|
|
|
|
|
|
|
|
|
|
|
365 |
try:
|
366 |
+
answer = llm.invoke(query)
|
367 |
+
code = f"""
|
368 |
+
{template.split("```python")[1].split("```")[0]}
|
369 |
+
{answer.content.split("```python")[1].split("```")[0]}
|
370 |
+
"""
|
371 |
+
# update variable `answer` when code is executed
|
372 |
exec(code)
|
373 |
ran = True
|
374 |
no_response = False
|
375 |
except Exception as e:
|
376 |
no_response = True
|
377 |
exception = e
|
378 |
+
if code is not None:
|
379 |
+
answer = f"!!!Faced an error while working on your query. Please try again!!!"
|
380 |
+
|
381 |
+
if type(answer) != str:
|
382 |
+
answer = f"!!!Faced an error while working on your query. Please try again!!!"
|
383 |
+
|
384 |
response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": prompt, "no_response": no_response}
|
385 |
|
386 |
# Get response from agent
|
|
|
388 |
# response = ask_agent(agent, prompt)
|
389 |
|
390 |
if ran:
|
391 |
+
break
|
392 |
|
393 |
+
# Display agent response
|
394 |
+
if code is not None:
|
395 |
+
# Add agent response to chat history
|
396 |
+
print("Adding response")
|
397 |
+
st.session_state.responses.append(response)
|
398 |
+
show_response(st, response)
|
399 |
+
|
400 |
if no_response:
|
401 |
+
print("No response")
|
402 |
st.error(f"Failed to generate right output due to the following error:\n\n{exception}")
|
403 |
+
|
|
|
404 |
|
|
|
|
|
|
|
405 |
|
406 |
+
prompt = 'Custom Prompt'
|