Spaces:
Sleeping
Sleeping
File size: 6,920 Bytes
a73d60f b2fd176 1960a99 b2fd176 1960a99 b2fd176 df0e756 b2fd176 1960a99 a73d60f b2fd176 1960a99 a73d60f 1960a99 a73d60f 1960a99 a73d60f 1960a99 df0e756 1960a99 a73d60f b2fd176 a73d60f b2fd176 df0e756 b2fd176 a73d60f 1960a99 df0e756 1960a99 a73d60f 1960a99 b2fd176 df0e756 1960a99 df0e756 1960a99 df0e756 a73d60f df0e756 1960a99 df0e756 1960a99 a73d60f df0e756 1960a99 a73d60f 1960a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.impute import SimpleImputer
from imblearn.over_sampling import SMOTE
from sklearn.metrics import accuracy_score, classification_report, mean_squared_error, mean_absolute_error, r2_score
# Import ML Models
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.svm import SVC, SVR
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.linear_model import Perceptron
# Sidebar UI
st.sidebar.title("AI Code Generator π§ ")
st.sidebar.markdown("Generate AI models instantly!")
# Model Selection
model_options = ["KNN", "SVM", "Random Forest", "Decision Tree", "Perceptron"]
model = st.sidebar.selectbox("Choose a Model:", model_options)
# Task Selection
task_options = ["Classification", "Regression"]
task = st.sidebar.selectbox("Choose a Task:", task_options)
# Problem Selection based on Task and Model
problems = {
"Classification": {
"KNN": ["Spam Detection", "Disease Prediction"],
"SVM": ["Image Recognition", "Text Classification"],
"Random Forest": ["Fraud Detection", "Customer Segmentation"],
"Decision Tree": ["Loan Approval", "Churn Prediction"],
"Perceptron": ["Handwritten Digit Recognition", "Sentiment Analysis"]
},
"Regression": {
"KNN": ["House Price Prediction", "Stock Prediction"],
"SVM": ["Sales Forecasting", "Stock Market Trends"],
"Random Forest": ["Energy Consumption", "Patient Survival Prediction"],
"Decision Tree": ["House Price Estimation", "Revenue Prediction"],
"Perceptron": ["Weather Forecasting", "Traffic Flow Prediction"]
}
}
problem = st.sidebar.selectbox("Choose a Problem:", problems[task][model])
dataset_mapping = {name: f"datasets/{name.lower().replace(' ', '_')}.csv" for sublist in problems.values() for model in sublist for name in sublist[model]}
# # Dataset Selection (User selects a pre-existing fake dataset)
# dataset_mapping = {
# "Spam Detection": "datasets/spam_detection.csv",
# "Disease Prediction": "datasets/disease_prediction.csv",
# "Image Recognition": "datasets/image_recognition.csv",
# "Text Classification": "datasets/text_classification.csv",
# "Fraud Detection": "datasets/fraud_detection.csv",
# "Customer Segmentation": "datasets/customer_segmentation.csv",
# "Loan Approval": "datasets/loan_approval.csv",
# "House Price Prediction": "datasets/house_price_prediction.csv",
# "Sales Forecasting": "datasets/sales_forecasting.csv",
# }
dataset_path = dataset_mapping.get(problem, "datasets/spam_detection.csv")
df = pd.read_csv(dataset_path)
# Display dataset
st.subheader("Sample Dataset")
st.write(df.head())
# Preprocessing Steps
st.subheader("π Preprocessing Steps")
st.markdown("""
- β
Handle Missing Values
- β
Encoding Categorical Variables
- β
Feature Scaling
- β
Feature Selection
- β
Handling Imbalanced Data using **SMOTE**
""")
# Handle missing values
imputer = SimpleImputer(strategy='mean')
df = df.apply(lambda col: imputer.fit_transform(col.values.reshape(-1, 1)).flatten() if col.dtypes == 'float64' else col)
# Encoding categorical variables
label_encoders = {}
for col in df.select_dtypes(include=['object']).columns:
label_encoders[col] = LabelEncoder()
df[col] = label_encoders[col].fit_transform(df[col])
# Split Data
X = df.iloc[:, :-1] # Features
y = df.iloc[:, -1] # Target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Feature Scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Feature Selection
selector = SelectKBest(score_func=f_classif, k=min(5, X.shape[1])) # Ensure k does not exceed available features
X_train = selector.fit_transform(X_train, y_train)
X_test = selector.transform(X_test)
# Handle imbalanced data
if task == "Classification":
smote = SMOTE()
X_train, y_train = smote.fit_resample(X_train, y_train)
# Model Initialization
if task == "Classification":
n_neighbors = min(5, len(y_train)) # Ensure k is valid
model_mapping = {
"KNN": KNeighborsClassifier(n_neighbors=n_neighbors),
"SVM": SVC(),
"Random Forest": RandomForestClassifier(),
"Decision Tree": DecisionTreeClassifier(),
"Perceptron": Perceptron()
}
else:
n_neighbors = min(5, len(y_train)) # Ensure k is valid
model_mapping = {
"KNN": KNeighborsRegressor(n_neighbors=n_neighbors),
"SVM": SVR(),
"Random Forest": RandomForestRegressor(),
"Decision Tree": DecisionTreeRegressor(),
"Perceptron": Perceptron()
}
model_instance = model_mapping[model]
# Train Model
model_instance.fit(X_train, y_train)
y_pred = model_instance.predict(X_test)
# Model Evaluation
st.subheader("π Model Evaluation")
if task == "Classification":
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, output_dict=True)
st.write(f"**Accuracy:** {accuracy:.2f}")
st.json(report) # Shows detailed structured metrics
elif task == "Regression":
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
st.write(f"**Mean Squared Error (MSE):** {mse:.4f}")
st.write(f"**Mean Absolute Error (MAE):** {mae:.4f}")
st.write(f"**RΒ² Score:** {r2:.4f}")
# Data Visualization
st.subheader("π Data Visualization")
# Heatmap
st.write("### π₯ Feature Correlation")
plt.figure(figsize=(8, 5))
sns.heatmap(df.corr(), annot=True, cmap="coolwarm")
st.pyplot(plt)
# Pair Plot
st.write("### π Pair Plot of Features")
sns.pairplot(df, diag_kind='kde')
st.pyplot()
# Feature Importance (for tree-based models)
if model in ["Random Forest", "Decision Tree"]:
feature_importances = model_instance.feature_importances_
feature_names = X.columns
importance_df = pd.DataFrame({"Feature": feature_names, "Importance": feature_importances})
importance_df = importance_df.sort_values(by="Importance", ascending=False)
st.write("### π Feature Importance")
fig, ax = plt.subplots()
sns.barplot(x=importance_df["Importance"], y=importance_df["Feature"], ax=ax)
st.pyplot(fig)
# Download Code
st.download_button("π Download Python Code (.py)", "ai_model.py")
st.download_button("π Download Notebook (.ipynb)", "ai_model.ipynb")
st.markdown("[π Open in Colab](https://colab.research.google.com/)")
st.success("Code generated! Download and do magic! β¨")
|