Spaces:
Sleeping
Sleeping
Surbhi
commited on
Commit
Β·
b2fd176
1
Parent(s):
e002b05
Feature extraction and model training
Browse files- app.py +116 -48
- models/trained_model.pkl +0 -0
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,41 +1,74 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
|
|
3 |
import textwrap
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
|
|
10 |
model_options = ["KNN", "SVM", "Random Forest", "Decision Tree", "Perceptron"]
|
11 |
model = st.sidebar.selectbox("Choose a Model:", model_options)
|
12 |
|
13 |
-
# Task Selection
|
14 |
task_options = ["Classification", "Regression"]
|
15 |
task = st.sidebar.selectbox("Choose a Task:", task_options)
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
"KNN": ["Disease Prediction", "Spam Detection"],
|
21 |
-
"SVM": ["Image Recognition", "Text Classification"],
|
22 |
-
"Random Forest": ["Fraud Detection", "Customer Segmentation"],
|
23 |
-
"Decision Tree": ["Loan Approval", "Churn Prediction"],
|
24 |
-
"Perceptron": ["Handwritten Digit Recognition", "Sentiment Analysis"]
|
25 |
-
},
|
26 |
-
"Regression": {
|
27 |
-
"KNN": ["House Price Prediction", "Stock Prediction"],
|
28 |
-
"SVM": ["Sales Forecasting", "Stock Market Trends"],
|
29 |
-
"Random Forest": ["Energy Consumption", "Patient Survival Prediction"],
|
30 |
-
"Decision Tree": ["House Price Estimation", "Revenue Prediction"],
|
31 |
-
"Perceptron": ["Weather Forecasting", "Traffic Flow Prediction"]
|
32 |
-
}
|
33 |
-
}
|
34 |
|
35 |
-
|
|
|
|
|
36 |
|
37 |
-
#
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
model_mapping = {
|
40 |
"KNN": "KNeighborsClassifier" if task == "Classification" else "KNeighborsRegressor",
|
41 |
"SVM": "SVC" if task == "Classification" else "SVR",
|
@@ -43,46 +76,81 @@ def generate_code(model, task, problem):
|
|
43 |
"Decision Tree": "DecisionTreeClassifier" if task == "Classification" else "DecisionTreeRegressor",
|
44 |
"Perceptron": "Perceptron" if task == "Classification" else "Perceptron"
|
45 |
}
|
46 |
-
|
47 |
-
|
48 |
|
49 |
template = f"""
|
50 |
import numpy as np
|
51 |
import pandas as pd
|
52 |
-
|
53 |
-
from sklearn.preprocessing import StandardScaler
|
54 |
-
from sklearn.{model.lower()} import {selected_model}
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
data = pd.read_csv('dataset.csv')
|
58 |
-
X = data.iloc[:, :-1] # Features
|
59 |
-
y = data.iloc[:, -1] # Target
|
60 |
|
61 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
63 |
|
64 |
-
#
|
65 |
scaler = StandardScaler()
|
66 |
X_train = scaler.fit_transform(X_train)
|
67 |
X_test = scaler.transform(X_test)
|
68 |
|
69 |
-
#
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
# Training
|
|
|
73 |
model.fit(X_train, y_train)
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
"""
|
79 |
-
return textwrap.dedent(template)
|
80 |
|
81 |
-
code
|
82 |
-
st.
|
83 |
|
84 |
-
#
|
85 |
-
|
86 |
-
|
|
|
87 |
|
88 |
-
st.success("
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import joblib
|
5 |
import textwrap
|
6 |
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
9 |
+
from sklearn.impute import SimpleImputer
|
10 |
+
from sklearn.feature_selection import SelectKBest, f_classif, f_regression
|
11 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, mean_absolute_error, mean_squared_error, r2_score
|
12 |
+
from imblearn.over_sampling import SMOTE
|
13 |
+
|
14 |
+
# Streamlit UI
|
15 |
+
st.title("π AI Code Generator")
|
16 |
+
st.markdown("Generate & Train ML Models with Preprocessing and Feature Selection")
|
17 |
|
18 |
+
# Sidebar UI
|
19 |
+
st.sidebar.title("Choose Options")
|
20 |
model_options = ["KNN", "SVM", "Random Forest", "Decision Tree", "Perceptron"]
|
21 |
model = st.sidebar.selectbox("Choose a Model:", model_options)
|
22 |
|
|
|
23 |
task_options = ["Classification", "Regression"]
|
24 |
task = st.sidebar.selectbox("Choose a Task:", task_options)
|
25 |
|
26 |
+
# Load Dataset
|
27 |
+
st.markdown("### Upload your Dataset (CSV)")
|
28 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
if uploaded_file:
|
31 |
+
data = pd.read_csv(uploaded_file)
|
32 |
+
st.write("Preview of Dataset:", data.head())
|
33 |
|
34 |
+
# Preprocessing Steps
|
35 |
+
st.markdown("### Data Preprocessing Steps")
|
36 |
+
|
37 |
+
# Handling Missing Values
|
38 |
+
st.write("β
Handling missing values using `SimpleImputer`")
|
39 |
+
imputer = SimpleImputer(strategy="mean")
|
40 |
+
data.fillna(data.mean(), inplace=True)
|
41 |
+
|
42 |
+
# Encoding Categorical Variables
|
43 |
+
st.write("β
Encoding categorical variables")
|
44 |
+
for col in data.select_dtypes(include=["object"]).columns:
|
45 |
+
data[col] = LabelEncoder().fit_transform(data[col])
|
46 |
+
|
47 |
+
# Splitting Data
|
48 |
+
X = data.iloc[:, :-1] # Features
|
49 |
+
y = data.iloc[:, -1] # Target
|
50 |
+
|
51 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
52 |
+
|
53 |
+
# Feature Scaling
|
54 |
+
st.write("β
Applying StandardScaler")
|
55 |
+
scaler = StandardScaler()
|
56 |
+
X_train = scaler.fit_transform(X_train)
|
57 |
+
X_test = scaler.transform(X_test)
|
58 |
+
|
59 |
+
# Handle Imbalanced Dataset using SMOTE
|
60 |
+
if task == "Classification":
|
61 |
+
st.write("β
Handling Imbalanced Dataset using SMOTE")
|
62 |
+
smote = SMOTE()
|
63 |
+
X_train, y_train = smote.fit_resample(X_train, y_train)
|
64 |
+
|
65 |
+
# Feature Selection
|
66 |
+
st.write("β
Selecting Best Features")
|
67 |
+
selector = SelectKBest(f_classif if task == "Classification" else f_regression, k=min(5, X.shape[1]))
|
68 |
+
X_train = selector.fit_transform(X_train, y_train)
|
69 |
+
X_test = selector.transform(X_test)
|
70 |
+
|
71 |
+
# Model Training
|
72 |
model_mapping = {
|
73 |
"KNN": "KNeighborsClassifier" if task == "Classification" else "KNeighborsRegressor",
|
74 |
"SVM": "SVC" if task == "Classification" else "SVR",
|
|
|
76 |
"Decision Tree": "DecisionTreeClassifier" if task == "Classification" else "DecisionTreeRegressor",
|
77 |
"Perceptron": "Perceptron" if task == "Classification" else "Perceptron"
|
78 |
}
|
79 |
+
|
80 |
+
model_class = model_mapping[model]
|
81 |
|
82 |
template = f"""
|
83 |
import numpy as np
|
84 |
import pandas as pd
|
85 |
+
import joblib
|
|
|
|
|
86 |
|
87 |
+
from sklearn.model_selection import train_test_split
|
88 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
89 |
+
from sklearn.impute import SimpleImputer
|
90 |
+
from sklearn.feature_selection import SelectKBest, f_classif, f_regression
|
91 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, mean_absolute_error, mean_squared_error, r2_score
|
92 |
+
from imblearn.over_sampling import SMOTE
|
93 |
+
from sklearn.{model.lower()} import {model_class}
|
94 |
+
|
95 |
+
# Load Dataset
|
96 |
data = pd.read_csv('dataset.csv')
|
|
|
|
|
97 |
|
98 |
+
# Handling Missing Values
|
99 |
+
imputer = SimpleImputer(strategy="mean")
|
100 |
+
data.fillna(data.mean(), inplace=True)
|
101 |
+
|
102 |
+
# Encoding Categorical Variables
|
103 |
+
for col in data.select_dtypes(include=["object"]).columns:
|
104 |
+
data[col] = LabelEncoder().fit_transform(data[col])
|
105 |
+
|
106 |
+
# Splitting Data
|
107 |
+
X = data.iloc[:, :-1]
|
108 |
+
y = data.iloc[:, -1]
|
109 |
+
|
110 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
111 |
|
112 |
+
# Feature Scaling
|
113 |
scaler = StandardScaler()
|
114 |
X_train = scaler.fit_transform(X_train)
|
115 |
X_test = scaler.transform(X_test)
|
116 |
|
117 |
+
# Handle Imbalanced Data (SMOTE)
|
118 |
+
if "{task}" == "Classification":
|
119 |
+
smote = SMOTE()
|
120 |
+
X_train, y_train = smote.fit_resample(X_train, y_train)
|
121 |
+
|
122 |
+
# Feature Selection
|
123 |
+
selector = SelectKBest(f_classif if "{task}" == "Classification" else f_regression, k=min(5, X.shape[1]))
|
124 |
+
X_train = selector.fit_transform(X_train, y_train)
|
125 |
+
X_test = selector.transform(X_test)
|
126 |
|
127 |
+
# Model Training
|
128 |
+
model = {model_class}()
|
129 |
model.fit(X_train, y_train)
|
130 |
|
131 |
+
# Save Trained Model
|
132 |
+
joblib.dump(model, 'models/trained_model.pkl')
|
133 |
+
|
134 |
+
# Evaluation Metrics
|
135 |
+
if "{task}" == "Classification":
|
136 |
+
y_pred = model.predict(X_test)
|
137 |
+
print("Accuracy:", accuracy_score(y_test, y_pred))
|
138 |
+
print("Precision:", precision_score(y_test, y_pred, average='weighted'))
|
139 |
+
print("Recall:", recall_score(y_test, y_pred, average='weighted'))
|
140 |
+
print("F1 Score:", f1_score(y_test, y_pred, average='weighted'))
|
141 |
+
else:
|
142 |
+
y_pred = model.predict(X_test)
|
143 |
+
print("Mean Absolute Error:", mean_absolute_error(y_test, y_pred))
|
144 |
+
print("Mean Squared Error:", mean_squared_error(y_test, y_pred))
|
145 |
+
print("R2 Score:", r2_score(y_test, y_pred))
|
146 |
"""
|
|
|
147 |
|
148 |
+
st.code(template, language="python")
|
149 |
+
st.download_button("π₯ Download AI Model Code", template, "ai_model.py")
|
150 |
|
151 |
+
# Save Model
|
152 |
+
model_instance = eval(model_class)()
|
153 |
+
model_instance.fit(X_train, y_train)
|
154 |
+
joblib.dump(model_instance, "models/trained_model.pkl")
|
155 |
|
156 |
+
st.success("β
Model trained and saved as `trained_model.pkl`")
|
models/trained_model.pkl
ADDED
File without changes
|
requirements.txt
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
streamlit
|
2 |
-
scikit-learn
|
3 |
pandas
|
4 |
numpy
|
|
|
|
|
|
|
|
1 |
streamlit
|
|
|
2 |
pandas
|
3 |
numpy
|
4 |
+
scikit-learn
|
5 |
+
joblib
|
6 |
+
imbalanced-learn
|