Spaces:
Sleeping
Sleeping
Surbhi
commited on
Commit
Β·
1960a99
1
Parent(s):
b2fd176
Feature extraction and model training
Browse files- app.py +109 -121
- dataset.csv +0 -14
- datasets/disease_prediction.csv +4 -0
- datasets/fraud_detection.csv +6 -0
- datasets/house_price.csv +6 -0
- datasets/sales_forecasting.csv +6 -0
- datasets/spam_detection.csv +6 -0
- models/trained_model.pkl +0 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,112 +1,93 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
|
|
9 |
from sklearn.impute import SimpleImputer
|
10 |
-
from sklearn.feature_selection import SelectKBest, f_classif, f_regression
|
11 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, mean_absolute_error, mean_squared_error, r2_score
|
12 |
from imblearn.over_sampling import SMOTE
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
# Sidebar UI
|
19 |
-
st.sidebar.title("
|
|
|
|
|
|
|
20 |
model_options = ["KNN", "SVM", "Random Forest", "Decision Tree", "Perceptron"]
|
21 |
model = st.sidebar.selectbox("Choose a Model:", model_options)
|
22 |
|
|
|
23 |
task_options = ["Classification", "Regression"]
|
24 |
task = st.sidebar.selectbox("Choose a Task:", task_options)
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
# Encoding Categorical Variables
|
43 |
-
st.write("β
Encoding categorical variables")
|
44 |
-
for col in data.select_dtypes(include=["object"]).columns:
|
45 |
-
data[col] = LabelEncoder().fit_transform(data[col])
|
46 |
-
|
47 |
-
# Splitting Data
|
48 |
-
X = data.iloc[:, :-1] # Features
|
49 |
-
y = data.iloc[:, -1] # Target
|
50 |
-
|
51 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
52 |
-
|
53 |
-
# Feature Scaling
|
54 |
-
st.write("β
Applying StandardScaler")
|
55 |
-
scaler = StandardScaler()
|
56 |
-
X_train = scaler.fit_transform(X_train)
|
57 |
-
X_test = scaler.transform(X_test)
|
58 |
-
|
59 |
-
# Handle Imbalanced Dataset using SMOTE
|
60 |
-
if task == "Classification":
|
61 |
-
st.write("β
Handling Imbalanced Dataset using SMOTE")
|
62 |
-
smote = SMOTE()
|
63 |
-
X_train, y_train = smote.fit_resample(X_train, y_train)
|
64 |
-
|
65 |
-
# Feature Selection
|
66 |
-
st.write("β
Selecting Best Features")
|
67 |
-
selector = SelectKBest(f_classif if task == "Classification" else f_regression, k=min(5, X.shape[1]))
|
68 |
-
X_train = selector.fit_transform(X_train, y_train)
|
69 |
-
X_test = selector.transform(X_test)
|
70 |
-
|
71 |
-
# Model Training
|
72 |
-
model_mapping = {
|
73 |
-
"KNN": "KNeighborsClassifier" if task == "Classification" else "KNeighborsRegressor",
|
74 |
-
"SVM": "SVC" if task == "Classification" else "SVR",
|
75 |
-
"Random Forest": "RandomForestClassifier" if task == "Classification" else "RandomForestRegressor",
|
76 |
-
"Decision Tree": "DecisionTreeClassifier" if task == "Classification" else "DecisionTreeRegressor",
|
77 |
-
"Perceptron": "Perceptron" if task == "Classification" else "Perceptron"
|
78 |
}
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
#
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
111 |
|
112 |
# Feature Scaling
|
@@ -114,43 +95,50 @@ scaler = StandardScaler()
|
|
114 |
X_train = scaler.fit_transform(X_train)
|
115 |
X_test = scaler.transform(X_test)
|
116 |
|
117 |
-
# Handle Imbalanced Data (SMOTE)
|
118 |
-
if "{task}" == "Classification":
|
119 |
-
smote = SMOTE()
|
120 |
-
X_train, y_train = smote.fit_resample(X_train, y_train)
|
121 |
-
|
122 |
# Feature Selection
|
123 |
-
selector = SelectKBest(f_classif
|
124 |
X_train = selector.fit_transform(X_train, y_train)
|
125 |
X_test = selector.transform(X_test)
|
126 |
|
127 |
-
#
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
#
|
132 |
-
|
|
|
133 |
|
134 |
# Evaluation Metrics
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
else:
|
142 |
-
|
143 |
-
print("Mean Absolute Error:", mean_absolute_error(y_test, y_pred))
|
144 |
-
print("Mean Squared Error:", mean_squared_error(y_test, y_pred))
|
145 |
-
print("R2 Score:", r2_score(y_test, y_pred))
|
146 |
-
"""
|
147 |
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
|
156 |
-
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
|
|
6 |
from sklearn.model_selection import train_test_split
|
7 |
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
8 |
+
from sklearn.feature_selection import SelectKBest, f_classif
|
9 |
from sklearn.impute import SimpleImputer
|
|
|
|
|
10 |
from imblearn.over_sampling import SMOTE
|
11 |
+
from sklearn.metrics import accuracy_score, classification_report
|
12 |
|
13 |
+
# Import ML Models
|
14 |
+
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
|
15 |
+
from sklearn.svm import SVC, SVR
|
16 |
+
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
17 |
+
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
|
18 |
+
from sklearn.linear_model import Perceptron
|
19 |
|
20 |
# Sidebar UI
|
21 |
+
st.sidebar.title("AI Code Generator π§ ")
|
22 |
+
st.sidebar.markdown("Generate AI models instantly!")
|
23 |
+
|
24 |
+
# Model Selection
|
25 |
model_options = ["KNN", "SVM", "Random Forest", "Decision Tree", "Perceptron"]
|
26 |
model = st.sidebar.selectbox("Choose a Model:", model_options)
|
27 |
|
28 |
+
# Task Selection
|
29 |
task_options = ["Classification", "Regression"]
|
30 |
task = st.sidebar.selectbox("Choose a Task:", task_options)
|
31 |
|
32 |
+
# Problem Selection based on Task and Model
|
33 |
+
problems = {
|
34 |
+
"Classification": {
|
35 |
+
"KNN": ["Spam Detection", "Disease Prediction"],
|
36 |
+
"SVM": ["Image Recognition", "Text Classification"],
|
37 |
+
"Random Forest": ["Fraud Detection", "Customer Segmentation"],
|
38 |
+
"Decision Tree": ["Loan Approval", "Churn Prediction"],
|
39 |
+
"Perceptron": ["Handwritten Digit Recognition", "Sentiment Analysis"]
|
40 |
+
},
|
41 |
+
"Regression": {
|
42 |
+
"KNN": ["House Price Prediction", "Stock Prediction"],
|
43 |
+
"SVM": ["Sales Forecasting", "Stock Market Trends"],
|
44 |
+
"Random Forest": ["Energy Consumption", "Patient Survival Prediction"],
|
45 |
+
"Decision Tree": ["House Price Estimation", "Revenue Prediction"],
|
46 |
+
"Perceptron": ["Weather Forecasting", "Traffic Flow Prediction"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
}
|
48 |
+
}
|
49 |
+
|
50 |
+
problem = st.sidebar.selectbox("Choose a Problem:", problems[task][model])
|
51 |
+
|
52 |
+
# Dataset Selection (User selects a pre-existing fake dataset)
|
53 |
+
dataset_mapping = {
|
54 |
+
"Spam Detection": "datasets/spam_detection.csv",
|
55 |
+
"Disease Prediction": "datasets/disease_prediction.csv",
|
56 |
+
"Fraud Detection": "datasets/fraud_detection.csv",
|
57 |
+
"House Price Prediction": "datasets/house_price.csv",
|
58 |
+
"Sales Forecasting": "datasets/sales_forecasting.csv",
|
59 |
+
}
|
60 |
+
|
61 |
+
dataset_path = dataset_mapping.get(problem, "datasets/spam_detection.csv")
|
62 |
+
df = pd.read_csv(dataset_path)
|
63 |
+
|
64 |
+
# Display dataset
|
65 |
+
st.subheader("Sample Dataset")
|
66 |
+
st.write(df.head())
|
67 |
+
|
68 |
+
# Preprocessing Steps
|
69 |
+
st.subheader("π Preprocessing Steps")
|
70 |
+
st.markdown("""
|
71 |
+
- β
Handle Missing Values
|
72 |
+
- β
Encoding Categorical Variables
|
73 |
+
- β
Feature Scaling
|
74 |
+
- β
Feature Selection
|
75 |
+
- β
Handling Imbalanced Data using **SMOTE**
|
76 |
+
""")
|
77 |
+
|
78 |
+
# Handle missing values
|
79 |
+
imputer = SimpleImputer(strategy='mean')
|
80 |
+
df = df.apply(lambda col: imputer.fit_transform(col.values.reshape(-1, 1)).flatten() if col.dtypes == 'float64' else col)
|
81 |
+
|
82 |
+
# Encoding categorical variables
|
83 |
+
label_encoders = {}
|
84 |
+
for col in df.select_dtypes(include=['object']).columns:
|
85 |
+
label_encoders[col] = LabelEncoder()
|
86 |
+
df[col] = label_encoders[col].fit_transform(df[col])
|
87 |
+
|
88 |
+
# Split Data
|
89 |
+
X = df.iloc[:, :-1] # Features
|
90 |
+
y = df.iloc[:, -1] # Target
|
91 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
92 |
|
93 |
# Feature Scaling
|
|
|
95 |
X_train = scaler.fit_transform(X_train)
|
96 |
X_test = scaler.transform(X_test)
|
97 |
|
|
|
|
|
|
|
|
|
|
|
98 |
# Feature Selection
|
99 |
+
selector = SelectKBest(score_func=f_classif, k=5)
|
100 |
X_train = selector.fit_transform(X_train, y_train)
|
101 |
X_test = selector.transform(X_test)
|
102 |
|
103 |
+
# Handle imbalanced data
|
104 |
+
if task == "Classification":
|
105 |
+
smote = SMOTE()
|
106 |
+
X_train, y_train = smote.fit_resample(X_train, y_train)
|
107 |
+
|
108 |
+
# Model Initialization
|
109 |
+
model_mapping = {
|
110 |
+
"KNN": KNeighborsClassifier() if task == "Classification" else KNeighborsRegressor(),
|
111 |
+
"SVM": SVC() if task == "Classification" else SVR(),
|
112 |
+
"Random Forest": RandomForestClassifier() if task == "Classification" else RandomForestRegressor(),
|
113 |
+
"Decision Tree": DecisionTreeClassifier() if task == "Classification" else DecisionTreeRegressor(),
|
114 |
+
"Perceptron": Perceptron() if task == "Classification" else Perceptron()
|
115 |
+
}
|
116 |
+
|
117 |
+
model_instance = model_mapping[model]
|
118 |
|
119 |
+
# Train Model
|
120 |
+
model_instance.fit(X_train, y_train)
|
121 |
+
y_pred = model_instance.predict(X_test)
|
122 |
|
123 |
# Evaluation Metrics
|
124 |
+
st.subheader("π Model Evaluation")
|
125 |
+
if task == "Classification":
|
126 |
+
accuracy = accuracy_score(y_test, y_pred)
|
127 |
+
report = classification_report(y_test, y_pred)
|
128 |
+
st.write(f"**Accuracy:** {accuracy:.2f}")
|
129 |
+
st.text(report)
|
130 |
else:
|
131 |
+
st.write("Regression evaluation metrics will be added soon!")
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
# Visualization
|
134 |
+
st.subheader("π Data Visualization")
|
135 |
+
plt.figure(figsize=(8, 5))
|
136 |
+
sns.heatmap(df.corr(), annot=True, cmap="coolwarm")
|
137 |
+
st.pyplot(plt)
|
138 |
|
139 |
+
# Download Code
|
140 |
+
st.download_button("π Download Python Code (.py)", "ai_model.py")
|
141 |
+
st.download_button("π Download Notebook (.ipynb)", "ai_model.ipynb")
|
142 |
+
st.markdown("[π Open in Colab](https://colab.research.google.com/)")
|
143 |
|
144 |
+
st.success("Code generated! Download and do magic! β¨")
|
dataset.csv
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
# Fake dataset for AI Code Generator
|
2 |
-
# You can replace this with your own dataset
|
3 |
-
|
4 |
-
feature1,feature2,feature3,feature4,target
|
5 |
-
34,180,1,50000,0
|
6 |
-
25,165,0,60000,1
|
7 |
-
40,175,1,55000,0
|
8 |
-
30,170,0,62000,1
|
9 |
-
45,185,1,58000,0
|
10 |
-
28,160,0,57000,1
|
11 |
-
35,178,1,53000,0
|
12 |
-
50,190,1,49000,1
|
13 |
-
23,158,0,61000,0
|
14 |
-
38,172,1,56000,1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
datasets/disease_prediction.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fever,cough,fatigue,disease
|
2 |
+
98.6,0,0,"Healthy"
|
3 |
+
100.2,1,1,"Flu"
|
4 |
+
101.5,1,0,"COVID-19"
|
datasets/fraud_detection.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transaction_amount,transaction_type,location,is_fraud
|
2 |
+
500,Credit Card,New York,0
|
3 |
+
1200,Wire Transfer,California,1
|
4 |
+
250,Debit Card,Texas,0
|
5 |
+
800,Online Purchase,Florida,1
|
6 |
+
50,Cash Withdrawal,Illinois,0
|
datasets/house_price.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
area_sqft,bedrooms,bathrooms,location,price
|
2 |
+
1200,3,2,New York,350000
|
3 |
+
1800,4,3,California,500000
|
4 |
+
950,2,1,Texas,200000
|
5 |
+
2200,5,4,Florida,600000
|
6 |
+
1100,3,2,Illinois,300000
|
datasets/sales_forecasting.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
month,product,units_sold,revenue
|
2 |
+
January,Product A,150,4500
|
3 |
+
February,Product A,200,6000
|
4 |
+
March,Product B,180,5400
|
5 |
+
April,Product C,250,7500
|
6 |
+
May,Product B,220,6600
|
datasets/spam_detection.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
email_text,is_spam
|
2 |
+
"Congratulations! You won a lottery",1
|
3 |
+
"Important update on your bank account",1
|
4 |
+
"Meeting tomorrow at 10 AM",0
|
5 |
+
"Get your free trial now!",1
|
6 |
+
"Project submission deadline extended",0
|
models/trained_model.pkl
DELETED
File without changes
|
requirements.txt
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
streamlit
|
2 |
pandas
|
3 |
numpy
|
|
|
|
|
4 |
scikit-learn
|
5 |
-
joblib
|
6 |
imbalanced-learn
|
|
|
1 |
streamlit
|
2 |
pandas
|
3 |
numpy
|
4 |
+
matplotlib
|
5 |
+
seaborn
|
6 |
scikit-learn
|
|
|
7 |
imbalanced-learn
|