File size: 6,620 Bytes
24a6868
 
 
 
 
 
 
1d2025e
ccacd4d
ceadb77
dc704d6
1d2025e
24a6868
 
 
 
 
 
 
 
 
 
cb5ecc3
11453ec
24a6868
 
 
6095378
 
 
 
 
 
 
 
ef87d27
 
ef6e36a
ef87d27
 
45af443
ef6e36a
1d2025e
 
 
 
32f63e2
1d2025e
45af443
ef6e36a
ef87d27
1d2025e
 
 
 
ef6e36a
 
7de4c3e
c7f68b4
 
 
 
0563fad
24a6868
 
 
 
 
 
 
d032c56
35915ac
b0abbc2
ef6e36a
f4e97ee
 
8c94298
 
0563fad
 
35915ac
8c94298
f531783
c1d0a7f
8c94298
f531783
0656c70
8c94298
35e9dd4
0656c70
8c94298
 
c1d0a7f
6698eec
b0abbc2
c1d0a7f
8c94298
 
672253d
 
 
 
 
388fff6
8c94298
f97103a
b0abbc2
24a6868
d62c968
35915ac
24a6868
 
 
c6a4957
e9947e2
7d5447f
ebc69eb
0563fad
24a6868
0563fad
24a6868
 
63ddf6d
c7f68b4
1d2025e
e6b0483
 
1d2025e
 
 
 
e6b0483
24a6868
3389734
 
 
00acfc9
7de4c3e
6095378
00acfc9
44dca96
00acfc9
6095378
 
35915ac
6095378
45af443
6095378
 
212b184
 
e9947e2
6095378
 
3389734
24a6868
6095378
e7066e9
1d2025e
24a6868
1d2025e
3389734
24a6868
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Imports
import gradio as gr
import random
import spaces
import torch
import uuid
import os
from transformers import pipeline

from diffusers import StableDiffusionXLPipeline, ControlNetModel
from diffusers.models import AutoencoderKL
from PIL import Image

# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")

# Variables
MAX_SEED = 9007199254740991
DEFAULT_INPUT = ""
DEFAULT_NEGATIVE_INPUT = "EasyNegative, (bad), [abstract], deformed, distorted, disfigured, disconnected, disgusting, displeasing, mutation, mutated, blur, blurry, fewer, extra, missing, unfinished, scribble, lowres, low quality, jpeg artifacts, chromatic aberration, extra digits, artistic error, text, error, username, scan, signature, watermark, ugly, amputation, limb, limbs, leg, legs, foot, feet, toe, toes, arm, arms, hand, hands, finger, fingers, head, heads, exposed, explicit, porn, nude, nudity, naked, nsfw"
DEFAULT_MODEL = "Default"
DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained("MakiPan/controlnet-encoded-hands-130k", torch_dtype=torch.float16)

repo_default = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
repo_default.set_adapters(["base"], adapter_weights=[0.7])

#repo_pixel = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
#repo_pixel.load_lora_weights("artificialguybr/PixelArtRedmond", adapter_name="base")
#repo_pixel.load_lora_weights("nerijs/pixel-art-xl", adapter_name="base2")
#repo_pixel.set_adapters(["base", "base2"], adapter_weights=[1, 1])

#repo_large = StableDiffusionXLPipeline.from_pretrained("Corcelio/mobius", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)

repo_customs = {
    "Default": repo_default,
    "Realistic": None, #StableDiffusionXLPipeline.from_pretrained("stablediffusionapi/NightVision_XL", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=False, add_watermarker=False),
    "Anime": None, #StableDiffusionXLPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
    "Pixel": None, #repo_pixel,
    "Large": None, #repo_large,
}

# Functions
def save_image(img, seed):
    name = f"{seed}-{uuid.uuid4()}.png"
    img.save(name)
    return name
    
def get_seed(seed):
    seed = seed.strip()
    if seed.isdigit():
        return int(seed)
    else:
        return random.randint(0, MAX_SEED)

@spaces.GPU(duration=60)
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):

    repo = repo_customs[model or "Default"]
    filter_input = filter_input or ""
    negative_input = negative_input or DEFAULT_NEGATIVE_INPUT
    steps_set = steps
    guidance_set = guidance
    seed = get_seed(seed)

    print(input, filter_input, negative_input, model, height, width, steps, guidance, number, seed)
    
    if model == "Realistic":   
        steps_set = 35
        guidance_set = 7
    elif model == "Anime":   
        steps_set = 35
        guidance_set = 7
    elif model == "Pixel":   
        steps_set = 15
        guidance_set = 1.5
    elif model == "Large":   
        steps_set = 20
        guidance_set = 7
    else:
        steps_set = 20
        guidance_set = 3

    if not steps or steps < 0:
        steps = steps_set
    if not guidance or guidance < 0:
        guidance = guidance_set
    
    print(steps, guidance)
    
    repo.to(DEVICE)
    
    parameters  = {
        "prompt": input,
        "negative_prompt": filter_input + negative_input,
        "height": height,
        "width": width,
        "num_inference_steps": steps,
        "guidance_scale": guidance,
        "num_images_per_prompt": number,
        "controlnet_conditioning_scale": 1,
        "cross_attention_kwargs": {"scale": 1},
        "generator": torch.Generator().manual_seed(seed),
        "use_resolution_binning": True,
        "output_type":"pil",
    }
    
    images = repo(**parameters).images
    image_paths = [save_image(img, seed) for img in images]

    print(image_paths)

    classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")(Image.open(image_paths[0]))
    
    print(classifier)
    
    return image_paths, classifier[0]

def cloud():
    print("[CLOUD] | Space maintained.")


# Initialize
with gr.Blocks(css=css) as main:
    with gr.Column():
        gr.Markdown("🪄 Generate high quality images on all styles between 10 to 20 seconds.")
        
    with gr.Column():
        input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input")
        filter_input = gr.Textbox(lines=1, value="", label="Input Filter")
        negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative")
        model = gr.Dropdown(label="Models", choices=repo_customs.keys(), value="Default")
        height = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height")
        width = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width")
        steps = gr.Slider(minimum=-1, maximum=100, step=1, value=-1, label="Steps")
        guidance = gr.Slider(minimum=-1, maximum=100, step=0.001, value=-1, label = "Guidance")
        number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number")
        seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)")
        submit = gr.Button("▶")
        maintain = gr.Button("☁️")

    with gr.Column():
        images = gr.Gallery(columns=1, label="Image")
        classifier = gr.Label()
            
    submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[images, classifier], queue=False)
    maintain.click(cloud, inputs=[], outputs=[], queue=False)

main.launch(show_api=True)