File size: 6,620 Bytes
24a6868 1d2025e ccacd4d ceadb77 dc704d6 1d2025e 24a6868 cb5ecc3 11453ec 24a6868 6095378 ef87d27 ef6e36a ef87d27 45af443 ef6e36a 1d2025e 32f63e2 1d2025e 45af443 ef6e36a ef87d27 1d2025e ef6e36a 7de4c3e c7f68b4 0563fad 24a6868 d032c56 35915ac b0abbc2 ef6e36a f4e97ee 8c94298 0563fad 35915ac 8c94298 f531783 c1d0a7f 8c94298 f531783 0656c70 8c94298 35e9dd4 0656c70 8c94298 c1d0a7f 6698eec b0abbc2 c1d0a7f 8c94298 672253d 388fff6 8c94298 f97103a b0abbc2 24a6868 d62c968 35915ac 24a6868 c6a4957 e9947e2 7d5447f ebc69eb 0563fad 24a6868 0563fad 24a6868 63ddf6d c7f68b4 1d2025e e6b0483 1d2025e e6b0483 24a6868 3389734 00acfc9 7de4c3e 6095378 00acfc9 44dca96 00acfc9 6095378 35915ac 6095378 45af443 6095378 212b184 e9947e2 6095378 3389734 24a6868 6095378 e7066e9 1d2025e 24a6868 1d2025e 3389734 24a6868 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# Imports
import gradio as gr
import random
import spaces
import torch
import uuid
import os
from transformers import pipeline
from diffusers import StableDiffusionXLPipeline, ControlNetModel
from diffusers.models import AutoencoderKL
from PIL import Image
# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
# Variables
MAX_SEED = 9007199254740991
DEFAULT_INPUT = ""
DEFAULT_NEGATIVE_INPUT = "EasyNegative, (bad), [abstract], deformed, distorted, disfigured, disconnected, disgusting, displeasing, mutation, mutated, blur, blurry, fewer, extra, missing, unfinished, scribble, lowres, low quality, jpeg artifacts, chromatic aberration, extra digits, artistic error, text, error, username, scan, signature, watermark, ugly, amputation, limb, limbs, leg, legs, foot, feet, toe, toes, arm, arms, hand, hands, finger, fingers, head, heads, exposed, explicit, porn, nude, nudity, naked, nsfw"
DEFAULT_MODEL = "Default"
DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained("MakiPan/controlnet-encoded-hands-130k", torch_dtype=torch.float16)
repo_default = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
repo_default.set_adapters(["base"], adapter_weights=[0.7])
#repo_pixel = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
#repo_pixel.load_lora_weights("artificialguybr/PixelArtRedmond", adapter_name="base")
#repo_pixel.load_lora_weights("nerijs/pixel-art-xl", adapter_name="base2")
#repo_pixel.set_adapters(["base", "base2"], adapter_weights=[1, 1])
#repo_large = StableDiffusionXLPipeline.from_pretrained("Corcelio/mobius", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
repo_customs = {
"Default": repo_default,
"Realistic": None, #StableDiffusionXLPipeline.from_pretrained("stablediffusionapi/NightVision_XL", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=False, add_watermarker=False),
"Anime": None, #StableDiffusionXLPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
"Pixel": None, #repo_pixel,
"Large": None, #repo_large,
}
# Functions
def save_image(img, seed):
name = f"{seed}-{uuid.uuid4()}.png"
img.save(name)
return name
def get_seed(seed):
seed = seed.strip()
if seed.isdigit():
return int(seed)
else:
return random.randint(0, MAX_SEED)
@spaces.GPU(duration=60)
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):
repo = repo_customs[model or "Default"]
filter_input = filter_input or ""
negative_input = negative_input or DEFAULT_NEGATIVE_INPUT
steps_set = steps
guidance_set = guidance
seed = get_seed(seed)
print(input, filter_input, negative_input, model, height, width, steps, guidance, number, seed)
if model == "Realistic":
steps_set = 35
guidance_set = 7
elif model == "Anime":
steps_set = 35
guidance_set = 7
elif model == "Pixel":
steps_set = 15
guidance_set = 1.5
elif model == "Large":
steps_set = 20
guidance_set = 7
else:
steps_set = 20
guidance_set = 3
if not steps or steps < 0:
steps = steps_set
if not guidance or guidance < 0:
guidance = guidance_set
print(steps, guidance)
repo.to(DEVICE)
parameters = {
"prompt": input,
"negative_prompt": filter_input + negative_input,
"height": height,
"width": width,
"num_inference_steps": steps,
"guidance_scale": guidance,
"num_images_per_prompt": number,
"controlnet_conditioning_scale": 1,
"cross_attention_kwargs": {"scale": 1},
"generator": torch.Generator().manual_seed(seed),
"use_resolution_binning": True,
"output_type":"pil",
}
images = repo(**parameters).images
image_paths = [save_image(img, seed) for img in images]
print(image_paths)
classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")(Image.open(image_paths[0]))
print(classifier)
return image_paths, classifier[0]
def cloud():
print("[CLOUD] | Space maintained.")
# Initialize
with gr.Blocks(css=css) as main:
with gr.Column():
gr.Markdown("🪄 Generate high quality images on all styles between 10 to 20 seconds.")
with gr.Column():
input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input")
filter_input = gr.Textbox(lines=1, value="", label="Input Filter")
negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative")
model = gr.Dropdown(label="Models", choices=repo_customs.keys(), value="Default")
height = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height")
width = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width")
steps = gr.Slider(minimum=-1, maximum=100, step=1, value=-1, label="Steps")
guidance = gr.Slider(minimum=-1, maximum=100, step=0.001, value=-1, label = "Guidance")
number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number")
seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)")
submit = gr.Button("▶")
maintain = gr.Button("☁️")
with gr.Column():
images = gr.Gallery(columns=1, label="Image")
classifier = gr.Label()
submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[images, classifier], queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True) |