File size: 6,154 Bytes
24a6868 ccacd4d 1b00a63 d541b67 1d2025e 24a6868 f303f09 11453ec 24a6868 6095378 85f70fe 3887a4a 21f01cc 8283c09 7e50ae5 3887a4a 31c4c2d 32f63e2 ef6e36a ef87d27 926f012 3887a4a c9612cf 5c29c27 ef6e36a 7e50ae5 7de4c3e c7f68b4 0563fad 24a6868 d032c56 35915ac b0abbc2 ef6e36a f4e97ee 8c94298 0563fad 35915ac 8c94298 f531783 b13cec6 867e893 f531783 b13cec6 867e893 35e9dd4 0656c70 8c94298 1b00a63 5c29c27 1b00a63 b0abbc2 1b00a63 867e893 8c94298 4ab383e 672253d 4ab383e 672253d 388fff6 8c94298 f97103a b0abbc2 24a6868 d62c968 35915ac 24a6868 c6a4957 e9947e2 0563fad 24a6868 0563fad 24a6868 63ddf6d c7f68b4 1d2025e e6b0483 85f70fe b416323 24a6868 3389734 7de4c3e 6095378 00acfc9 115e8a4 00acfc9 6095378 35915ac 6095378 45bfc52 7aab969 867e893 e9947e2 6095378 3389734 24a6868 6095378 393c4eb 24a6868 393c4eb 3389734 24a6868 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# Imports
import gradio as gr
import random
import spaces
import torch
import uuid
import os
from diffusers import StableDiffusionXLPipeline, StableDiffusion3Pipeline
from transformers import pipeline
from PIL import Image
# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
# Variables
MAX_SEED = 9007199254740991
DEFAULT_INPUT = ""
DEFAULT_NEGATIVE_INPUT = "(bad), (abstract), (deformed, distorted, disfigured, disconnected, disgusting, displeasing:1.3), (anatomy, bad anatomy, wrong anatomy), (blur, blurry), (mutation, mutated), missing, unfinished, scribble, lowres, low quality, title, subtitle, description, caption, text, error, username, scan, signature, watermark, (ugly), amputation, (limb, limbs, digit, digits, leg, legs, foot, feet, toe, toes, arm, arms, hand, hands, finger, fingers, head, heads:1.3), (exposed, explicit, porn, nude, nudity, naked, nsfw:1.25)"
DEFAULT_MODEL = "Default"
DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
repo_nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")
repo_default = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
repo_default.set_adapters(["base"], adapter_weights=[0.7])
repo_pixel = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
repo_pixel.load_lora_weights("artificialguybr/PixelArtRedmond", adapter_name="base")
repo_pixel.load_lora_weights("nerijs/pixel-art-xl", adapter_name="base2")
repo_pixel.set_adapters(["base", "base2"], adapter_weights=[1, 1])
repo_customs = {
"Default": repo_default,
"Realistic": StableDiffusionXLPipeline.from_pretrained("ehristoforu/Visionix-alpha", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
"Anime": StableDiffusionXLPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
"Pixel": repo_pixel,
"Large": StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
}
# Functions
def save_image(img, seed):
name = f"{seed}-{uuid.uuid4()}.png"
img.save(name)
return name
def get_seed(seed):
seed = seed.strip()
if seed.isdigit():
return int(seed)
else:
return random.randint(0, MAX_SEED)
@spaces.GPU(duration=60)
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):
repo = repo_customs[model or "Default"]
filter_input = filter_input or ""
negative_input = negative_input or DEFAULT_NEGATIVE_INPUT
steps_set = steps
guidance_set = guidance
seed = get_seed(seed)
print(input, filter_input, negative_input, model, height, width, steps, guidance, number, seed)
if model == "Realistic":
steps_set = 25
guidance_set = 5
elif model == "Anime":
steps_set = 25
guidance_set = 5
elif model == "Pixel":
steps_set = 15
guidance_set = 1.5
elif model == "Large":
steps_set = 30
guidance_set = 5
else:
steps_set = 25
guidance_set = 5
if not steps:
steps = steps_set
if not guidance:
guidance = guidance_set
print(steps, guidance)
repo.to(DEVICE)
parameters = {
"prompt": input,
"negative_prompt": filter_input + negative_input,
"height": height,
"width": width,
"num_inference_steps": steps,
"guidance_scale": guidance,
"num_images_per_prompt": number,
"generator": torch.Generator().manual_seed(seed),
"use_resolution_binning": True,
"output_type":"pil",
}
images = repo(**parameters).images
image_paths = [save_image(img, seed) for img in images]
print(image_paths)
nsfw_prediction = repo_nsfw_classifier(Image.open(image_paths[0]))
print(nsfw_prediction)
return image_paths, {item['label']: round(item['score'], 3) for item in nsfw_prediction}
def cloud():
print("[CLOUD] | Space maintained.")
# Initialize
with gr.Blocks(css=css) as main:
with gr.Column():
gr.Markdown("🪄 Generate high quality images in all styles.")
with gr.Column():
input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input")
filter_input = gr.Textbox(lines=1, value="", label="Input Filter")
negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative")
model = gr.Dropdown(choices=repo_customs.keys(), value="Default", label="Model")
height = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height")
width = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width")
steps = gr.Slider(minimum=1, maximum=100, step=1, value=25, label="Steps")
guidance = gr.Slider(minimum=0, maximum=100, step=0.1, value=5, label = "Guidance")
number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number")
seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)")
submit = gr.Button("▶")
maintain = gr.Button("☁️")
with gr.Column():
output = gr.Gallery(columns=1, label="Image")
output_2 = gr.Label()
submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[output, output_2], queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True) |