File size: 6,154 Bytes
24a6868
 
 
 
 
 
 
ccacd4d
1b00a63
d541b67
1d2025e
24a6868
 
 
 
 
 
 
 
 
 
f303f09
11453ec
24a6868
 
 
6095378
 
 
 
 
 
 
 
85f70fe
 
3887a4a
21f01cc
8283c09
7e50ae5
3887a4a
31c4c2d
 
 
32f63e2
ef6e36a
ef87d27
926f012
3887a4a
c9612cf
5c29c27
ef6e36a
7e50ae5
7de4c3e
c7f68b4
 
 
 
0563fad
24a6868
 
 
 
 
 
 
d032c56
35915ac
b0abbc2
ef6e36a
f4e97ee
 
8c94298
 
0563fad
 
35915ac
8c94298
f531783
b13cec6
867e893
f531783
b13cec6
867e893
35e9dd4
0656c70
8c94298
1b00a63
5c29c27
1b00a63
b0abbc2
1b00a63
867e893
8c94298
4ab383e
672253d
4ab383e
672253d
 
388fff6
8c94298
f97103a
b0abbc2
24a6868
d62c968
35915ac
24a6868
 
 
c6a4957
e9947e2
0563fad
24a6868
0563fad
24a6868
 
63ddf6d
c7f68b4
1d2025e
e6b0483
 
85f70fe
 
 
 
b416323
24a6868
3389734
 
 
7de4c3e
6095378
00acfc9
115e8a4
00acfc9
6095378
 
35915ac
6095378
45bfc52
7aab969
 
867e893
 
e9947e2
6095378
 
3389734
24a6868
6095378
393c4eb
 
24a6868
393c4eb
3389734
24a6868
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Imports
import gradio as gr
import random
import spaces
import torch
import uuid
import os

from diffusers import StableDiffusionXLPipeline, StableDiffusion3Pipeline
from transformers import pipeline
from PIL import Image

# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")

# Variables
MAX_SEED = 9007199254740991
DEFAULT_INPUT = ""
DEFAULT_NEGATIVE_INPUT = "(bad), (abstract), (deformed, distorted, disfigured, disconnected, disgusting, displeasing:1.3), (anatomy, bad anatomy, wrong anatomy), (blur, blurry), (mutation, mutated), missing, unfinished, scribble, lowres, low quality, title, subtitle, description, caption, text, error, username, scan, signature, watermark, (ugly), amputation, (limb, limbs, digit, digits, leg, legs, foot, feet, toe, toes, arm, arms, hand, hands, finger, fingers, head, heads:1.3), (exposed, explicit, porn, nude, nudity, naked, nsfw:1.25)"
DEFAULT_MODEL = "Default"
DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

repo_nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")

repo_default = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
repo_default.set_adapters(["base"], adapter_weights=[0.7])

repo_pixel = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
repo_pixel.load_lora_weights("artificialguybr/PixelArtRedmond", adapter_name="base")
repo_pixel.load_lora_weights("nerijs/pixel-art-xl", adapter_name="base2")
repo_pixel.set_adapters(["base", "base2"], adapter_weights=[1, 1])

repo_customs = {
    "Default": repo_default,
    "Realistic": StableDiffusionXLPipeline.from_pretrained("ehristoforu/Visionix-alpha", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
    "Anime": StableDiffusionXLPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
    "Pixel": repo_pixel,
    "Large": StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
}

# Functions
def save_image(img, seed):
    name = f"{seed}-{uuid.uuid4()}.png"
    img.save(name)
    return name
    
def get_seed(seed):
    seed = seed.strip()
    if seed.isdigit():
        return int(seed)
    else:
        return random.randint(0, MAX_SEED)

@spaces.GPU(duration=60)
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):

    repo = repo_customs[model or "Default"]
    filter_input = filter_input or ""
    negative_input = negative_input or DEFAULT_NEGATIVE_INPUT
    steps_set = steps
    guidance_set = guidance
    seed = get_seed(seed)

    print(input, filter_input, negative_input, model, height, width, steps, guidance, number, seed)
    
    if model == "Realistic":   
        steps_set = 25
        guidance_set = 5
    elif model == "Anime":   
        steps_set = 25
        guidance_set = 5
    elif model == "Pixel":   
        steps_set = 15
        guidance_set = 1.5
    elif model == "Large":   
        steps_set = 30
        guidance_set = 5
    else:
        steps_set = 25
        guidance_set = 5

    if not steps:
        steps = steps_set
    if not guidance:
        guidance = guidance_set
    
    print(steps, guidance)
    
    repo.to(DEVICE)
    
    parameters  = {
        "prompt": input,
        "negative_prompt": filter_input + negative_input,
        "height": height,
        "width": width,
        "num_inference_steps": steps,
        "guidance_scale": guidance,
        "num_images_per_prompt": number,
        "generator": torch.Generator().manual_seed(seed),
        "use_resolution_binning": True,
        "output_type":"pil",
    }
    
    images = repo(**parameters).images
    image_paths = [save_image(img, seed) for img in images]

    print(image_paths)

    nsfw_prediction = repo_nsfw_classifier(Image.open(image_paths[0]))

    print(nsfw_prediction)

    return image_paths, {item['label']: round(item['score'], 3) for item in nsfw_prediction}

def cloud():
    print("[CLOUD] | Space maintained.")

# Initialize
with gr.Blocks(css=css) as main:
    with gr.Column():
        gr.Markdown("🪄 Generate high quality images in all styles.")
        
    with gr.Column():
        input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input")
        filter_input = gr.Textbox(lines=1, value="", label="Input Filter")
        negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative")
        model = gr.Dropdown(choices=repo_customs.keys(), value="Default", label="Model")
        height = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height")
        width = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width")
        steps = gr.Slider(minimum=1, maximum=100, step=1, value=25, label="Steps")
        guidance = gr.Slider(minimum=0, maximum=100, step=0.1, value=5, label = "Guidance")
        number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number")
        seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)")
        submit = gr.Button("▶")
        maintain = gr.Button("☁️")

    with gr.Column():
        output = gr.Gallery(columns=1, label="Image")
        output_2 = gr.Label()
            
    submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[output, output_2], queue=False)
    maintain.click(cloud, inputs=[], outputs=[], queue=False)

main.launch(show_api=True)