File size: 13,853 Bytes
8349bb4
 
 
1ad6ea2
a35fb23
1ad6ea2
 
 
 
 
a35fb23
1ad6ea2
 
a35fb23
1ad6ea2
 
a35fb23
1ad6ea2
 
 
34bda2a
1ad6ea2
 
a35fb23
 
 
 
 
 
 
34bda2a
 
 
 
 
a35fb23
1ad6ea2
 
 
a35fb23
1ad6ea2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35fb23
 
 
c16bb21
e46f973
c16bb21
 
 
 
 
 
 
e46f973
 
c16bb21
e46f973
c16bb21
 
 
 
e46f973
c16bb21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e46f973
c16bb21
 
 
e46f973
 
1ad6ea2
 
c16bb21
 
1ad6ea2
 
 
a35fb23
 
 
 
c16bb21
 
 
 
34bda2a
c16bb21
 
 
 
 
 
 
34bda2a
c16bb21
 
34bda2a
c16bb21
 
 
 
 
34bda2a
c16bb21
34bda2a
 
c16bb21
 
34bda2a
c16bb21
34bda2a
c16bb21
 
34bda2a
c16bb21
34bda2a
c16bb21
 
 
 
 
 
 
34bda2a
c16bb21
34bda2a
 
a35fb23
 
 
 
 
 
 
 
c16bb21
a35fb23
c16bb21
34bda2a
 
 
e46f973
c16bb21
 
 
 
 
e46f973
 
a35fb23
 
 
 
e46f973
 
 
c16bb21
 
 
e46f973
c16bb21
 
 
 
 
 
 
 
 
e46f973
 
 
 
c16bb21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35fb23
e46f973
 
c16bb21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35fb23
c16bb21
e46f973
 
 
c16bb21
 
 
 
 
 
a35fb23
1ad6ea2
c16bb21
 
a35fb23
1ad6ea2
34bda2a
 
 
 
 
c16bb21
 
 
 
 
 
34bda2a
a35fb23
1ad6ea2
 
a35fb23
1ad6ea2
a35fb23
 
 
1ad6ea2
a35fb23
 
 
1ad6ea2
34bda2a
c16bb21
1ad6ea2
 
 
c16bb21
1ad6ea2
c16bb21
1ad6ea2
a35fb23
 
 
c16bb21
 
 
 
 
 
 
1ad6ea2
a35fb23
 
 
 
c16bb21
a35fb23
 
 
 
1ad6ea2
34bda2a
c16bb21
1ad6ea2
 
c16bb21
1ad6ea2
c16bb21
1ad6ea2
a35fb23
 
 
1ad6ea2
a35fb23
 
 
 
 
 
8349bb4
a35fb23
 
 
 
 
 
c16bb21
 
 
 
 
 
 
 
 
 
 
 
 
1ad6ea2
a35fb23
 
 
 
 
 
8d56069
a35fb23
 
 
 
 
 
 
c16bb21
 
 
 
 
 
 
 
 
 
 
 
 
 
a35fb23
 
 
 
 
 
 
1ad6ea2
 
a35fb23
 
1ad6ea2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFaceHub
import fitz
from PIL import Image
import os
import pytesseract
import re

# Set Hugging Face API Key
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HF_TOKEN"]

# Initialize LLM
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.3", model_kwargs={"temperature": 0.5})

# App Configuration
st.set_page_config(page_title="DocuMentorAI", layout="wide", page_icon="📄")
st.title("📄 DocuMentorAI")

# Improved CSS
st.markdown("""
<style>
    .output-container {
        background-color: #f0f2f6;
        padding: 20px;
        border-radius: 10px;
        margin-top: 20px;
        white-space: pre-wrap;
    }
    .stTextArea textarea {
        font-size: 16px !important;
    }
    .stButton button {
        width: 100%;
    }
</style>
""", unsafe_allow_html=True)

# Helper Functions
def extract_text_from_pdf(pdf_file):
    try:
        pdf_bytes = pdf_file.read()
        with fitz.open(stream=pdf_bytes, filetype="pdf") as doc:
            return " ".join([page.get_text() for page in doc])
    except Exception as e:
        st.error(f"Error extracting text from PDF: {e}")
        return ""

def extract_text_from_image(image_file):
    try:
        image = Image.open(image_file)
        return pytesseract.image_to_string(image)
    except Exception as e:
        st.error(f"Error extracting text from image: {e}")
        return ""

def extract_text(uploaded_file):
    if not uploaded_file:
        return ""
    return extract_text_from_pdf(uploaded_file) if uploaded_file.type == "application/pdf" else extract_text_from_image(uploaded_file)

def parse_resume(resume_text):
    """Extract key information from resume text using improved parsing"""
    sections = {
        'education': ['Education:', 'EDUCATION', 'Academic Background'],
        'experience': ['Experience:', 'EXPERIENCE', 'Work History', 'Employment'],
        'skills': ['Skills:', 'SKILLS', 'Technical Skills', 'Technologies'],
        'projects': ['Projects:', 'PROJECTS', 'Key Projects'],
        'publications': ['Publications:', 'PUBLICATIONS', 'Research Papers']
    }
    
    parsed_info = {key: '' for key in sections}
    
    # Convert text to lines for better parsing
    lines = resume_text.split('\n')
    current_section = None
    section_content = []
    
    for line in lines:
        line = line.strip()
        if not line:
            continue
            
        # Check if this line is a section header
        for section, headers in sections.items():
            if any(header.lower() in line.lower() for header in headers):
                if current_section:
                    parsed_info[current_section] = '\n'.join(section_content)
                current_section = section
                section_content = []
                break
        else:
            if current_section:
                section_content.append(line)
    
    # Add the last section
    if current_section and section_content:
        parsed_info[current_section] = '\n'.join(section_content)
    
    return parsed_info

def extract_professor_details(text):
    professor_pattern = r"(Dr\.|Professor|Prof\.?)\s+([A-Z][a-z]+(?:\s[A-Z][a-z]+)*)"
    university_pattern = r"(University|Institute|College|School) of [A-Z][A-Za-z\s]+"
    
    professor_match = re.search(professor_pattern, text)
    university_match = re.search(university_pattern, text)
    
    return (professor_match.group(0) if professor_match else "Not Found",
            university_match.group(0) if university_match else "Not Found")

def clean_output(text, type_="general"):
    """Unified cleaning function for all document types"""
    if not text:
        return ""
        
    # Common start markers
    start_markers = {
        "email": ["Dear"],
        "cover_letter": ["Dear", "To Whom", "Hiring"],
        "research_statement": ["Research Statement", "Statement of Research"],
        "sop": ["Statement of Purpose", "Personal Statement"]
    }
    
    # Common end markers
    end_markers = ["Best regards,", "Sincerely,", "Yours sincerely,", "Kind regards,", "Thank you"]
    
    # Find start of content
    start_idx = 0
    relevant_starts = start_markers.get(type_, start_markers["email"])
    for marker in relevant_starts:
        idx = text.find(marker)
        if idx != -1:
            start_idx = idx
            break
    
    # Find end of content
    end_idx = len(text)
    for marker in end_markers:
        idx = text.find(marker)
        if idx != -1:
            end_idx = text.find("\n\n", idx) if text.find("\n\n", idx) != -1 else len(text)
            break
    
    cleaned_text = text[start_idx:end_idx].strip()
    
    # Add contact information for emails
    if type_ == "email" and ("Phone:" in text or "Email:" in text):
        contact_info = "\n\n" + "\n".join([
            line for line in text[end_idx:].split("\n")
            if any(info in line for info in ["Phone:", "Email:"])
        ]).strip()
        cleaned_text += contact_info
    
    return cleaned_text

# Initialize session state
if 'generated_content' not in st.session_state:
    st.session_state.generated_content = {
        'email': None,
        'cover_letter': None,
        'research_statement': None,
        'sop': None
    }

# Template Definitions (simplified and standardized)
templates = {
    'email': """
Write ONLY a formal cold email for a research position.
Start with 'Dear Professor' and end with a signature.

Use these specific details from the CV:
{education}
{experience}
{skills}
{projects}
{publications}

Additional Context:
Professor: {professor_name}
University: {university_name}
Research Interests: {research_interests}
Why This Lab: {reason}

Guidelines:
1. Keep the email concise (max 400 words)
2. Focus on the most relevant experience and skills
3. Mention 1-2 specific projects that align with the lab's work
4. Include a clear statement of interest
5. End with your contact information
""",
    'cover_letter': """
Write ONLY a professional cover letter for {job_title} at {company}.
Use these specific details:
{education}
{experience}
{skills}
{projects}

Required Skills: {key_skills}

Guidelines:
1. Start with a formal greeting
2. Focus on experiences matching job requirements
3. Provide specific examples
4. Show why you're an ideal candidate
5. End professionally
""",
    'research_statement': """
Write ONLY a research statement focused on your academic journey and future goals.
Background:
{education}
{experience}
{skills}
{projects}
{publications}

Research Focus:
{key_projects}
Future Goals: {future_goals}

Guidelines:
1. Describe your research journey
2. Highlight key achievements
3. Connect past work to future goals
4. Show technical expertise
5. Present your research vision
""",
    'sop': """
Write ONLY a Statement of Purpose (SOP) for graduate studies.
Background:
{education}
{experience}
{skills}
{projects}
{publications}

Context:
Motivation: {motivation}
Career Goals: {career_goals}
Program Interest: {why_this_program}

Guidelines:
1. Tell your academic journey
2. Connect background to goals
3. Show preparation for graduate study
4. Demonstrate program alignment
5. Make a compelling case
"""
}

# Convert templates to PromptTemplate objects
templates = {k: PromptTemplate.from_template(v) for k, v in templates.items()}
chains = {key: LLMChain(llm=llm, prompt=template) for key, template in templates.items()}

# Sidebar for Input Collection
with st.sidebar:
    st.subheader("📝 Input Details")
    job_opening_text = st.text_area("Job/Research Opening Details", height=150)
    cv_resume_file = st.file_uploader("Upload CV/Resume", type=["pdf", "png", "jpg", "jpeg"])
    cv_resume_text = extract_text(cv_resume_file) if cv_resume_file else ""

# Parse resume once for all tabs
resume_info = parse_resume(cv_resume_text) if cv_resume_text else {
    'education': '', 'experience': '', 'skills': '', 'projects': '', 'publications': ''
}

# Tab Layout
tab1, tab2, tab3, tab4 = st.tabs(["Cold Email", "Cover Letter", "Research Statement", "SOP"])

# Cold Email Tab
with tab1:
    professor_name, university_name = extract_professor_details(job_opening_text)
    research_interests = st.text_input("Research Interests")
    reason = st.text_input("Why this professor/lab?")
    
    if st.button("Generate Email", key="email_btn"):
        if job_opening_text and cv_resume_text:
            with st.spinner("Generating..."):
                try:
                    generated_email = chains['email'].run({
                        **resume_info,
                        "professor_name": professor_name,
                        "university_name": university_name,
                        "research_interests": research_interests,
                        "reason": reason
                    })
                    st.session_state.generated_content['email'] = clean_output(generated_email, "email")
                except Exception as e:
                    st.error(f"Generation error: {e}")
        else:
            st.error("Please provide all required inputs")
    
    if st.session_state.generated_content['email']:
        st.markdown('<div class="output-container">', unsafe_allow_html=True)
        st.markdown(st.session_state.generated_content['email'])
        st.download_button("Download Email", st.session_state.generated_content['email'],
                         file_name="email.txt", key="email_download")
        st.markdown('</div>', unsafe_allow_html=True)

# Cover Letter Tab
with tab2:
    job_title = st.text_input("Job Title")
    company_name = university_name if university_name != "Not Found" else st.text_input("Company/University")
    key_skills = st.text_input("Key Skills Required")
    
    if st.button("Generate Cover Letter", key="cover_letter_btn"):
        if job_opening_text and cv_resume_text:
            with st.spinner("Generating..."):
                try:
                    generated_letter = chains['cover_letter'].run({
                        **resume_info,
                        "job_title": job_title,
                        "company": company_name,
                        "key_skills": key_skills
                    })
                    st.session_state.generated_content['cover_letter'] = clean_output(generated_letter, "cover_letter")
                except Exception as e:
                    st.error(f"Generation error: {e}")
        else:
            st.error("Please provide all required inputs")

    if st.session_state.generated_content['cover_letter']:
        st.markdown('<div class="output-container">', unsafe_allow_html=True)
        st.markdown(st.session_state.generated_content['cover_letter'])
        st.download_button("Download Cover Letter", st.session_state.generated_content['cover_letter'],
                         file_name="cover_letter.txt", key="cover_letter_download")
        st.markdown('</div>', unsafe_allow_html=True)

# Research Statement Tab
with tab3:
    key_projects = st.text_input("Key Research Projects")
    future_goals = st.text_input("Future Research Goals")
    
    if st.button("Generate Research Statement", key="research_stmt_btn"):
        if cv_resume_text:
            with st.spinner("Generating..."):
                try:
                    generated_statement = chains['research_statement'].run({
                        **resume_info,
                        "key_projects": key_projects,
                        "future_goals": future_goals
                    })
                    st.session_state.generated_content['research_statement'] = clean_output(generated_statement, "research_statement")
                except Exception as e:
                    st.error(f"Generation error: {e}")
        else:
            st.error("Please upload your CV/Resume")

    if st.session_state.generated_content['research_statement']:
        st.markdown('<div class="output-container">', unsafe_allow_html=True)
        st.markdown(st.session_state.generated_content['research_statement'])
        st.download_button("Download Research Statement", st.session_state.generated_content['research_statement'],
                         file_name="research_statement.txt", key="research_stmt_download")
        st.markdown('</div>', unsafe_allow_html=True)

# SOP Tab
with tab4:
    motivation = st.text_input("Motivation for Graduate Studies")
    career_goals = st.text_input("Career Goals")
    why_this_program = st.text_input("Why This Program")
    
    if st.button("Generate SOP", key="sop_btn"):
        if cv_resume_text:
            with st.spinner("Generating..."):
                try:
                    generated_sop = chains['sop'].run({
                        **resume_info,
                        "motivation": motivation,
                        "career_goals": career_goals,
                        "why_this_program": why_this_program
                    })
                    st.session_state.generated_content['sop'] = clean_output(generated_sop, "sop")
                except Exception as e:
                    st.error(f"Generation error: {e}")
        else:
            st.error("Please upload your CV/Resume")

    if st.session_state.generated_content['sop']:
        st.markdown('<div class="output-container">', unsafe_allow_html=True)
        st.markdown(st.session_state.generated_content['sop'])
        st.download_button("Download SOP", st.session_state.generated_content['sop'],
                         file_name="sop.txt", key="sop_download")
        st.markdown('</div>', unsafe_allow_html=True)

# Reset Button
if st.sidebar.button("🔄 Reset All"):
    st.session_state.generated_content = {key: None for key in st.session_state.generated_content}
    st.experimental_rerun()