Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -59,6 +59,53 @@ def extract_text(uploaded_file):
|
|
59 |
if not uploaded_file:
|
60 |
return ""
|
61 |
return extract_text_from_pdf(uploaded_file) if uploaded_file.type == "application/pdf" else extract_text_from_image(uploaded_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
def extract_professor_details(text):
|
64 |
professor_pattern = r"(Dr\.|Professor|Prof\.?)\s+([A-Z][a-z]+\s[A-Z][a-z]+)"
|
@@ -164,56 +211,98 @@ templates = {
|
|
164 |
'email': PromptTemplate.from_template("""
|
165 |
Write ONLY a formal cold email for a research position.
|
166 |
Start with 'Dear Professor' and end with a signature.
|
167 |
-
Include only 2-3 most relevant highlights from the CV.
|
168 |
-
Do not include any other text or formatting.
|
169 |
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
Professor: {professor_name}
|
172 |
University: {university_name}
|
173 |
Research Interests: {research_interests}
|
174 |
Why This Lab: {reason}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
"""),
|
176 |
|
177 |
'cover_letter': PromptTemplate.from_template("""
|
178 |
Write ONLY a professional cover letter.
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
182 |
|
183 |
-
Details
|
184 |
Job Title: {job_title}
|
185 |
Company: {company}
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
"""),
|
189 |
|
190 |
'research_statement': PromptTemplate.from_template("""
|
191 |
-
Write ONLY a research statement.
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
195 |
|
196 |
-
|
197 |
-
Background: {research_background}
|
198 |
Key Projects: {key_projects}
|
199 |
Future Goals: {future_goals}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
"""),
|
201 |
|
202 |
'sop': PromptTemplate.from_template("""
|
203 |
-
Write ONLY a Statement of Purpose.
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
207 |
|
208 |
-
|
209 |
Motivation: {motivation}
|
210 |
-
Academic
|
211 |
-
Research
|
212 |
-
Career
|
213 |
-
Program
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
""")
|
215 |
}
|
216 |
|
|
|
217 |
# Create LangChain instances
|
218 |
chains = {key: LLMChain(llm=llm, prompt=template) for key, template in templates.items()}
|
219 |
|
@@ -237,12 +326,20 @@ with tab1:
|
|
237 |
if job_opening_text and cv_resume_text:
|
238 |
with st.spinner("Generating..."):
|
239 |
try:
|
|
|
|
|
|
|
|
|
240 |
generated_email = chains['email'].run({
|
241 |
"professor_name": professor_name,
|
242 |
"university_name": university_name,
|
243 |
"research_interests": research_interests,
|
244 |
"reason": reason,
|
245 |
-
"
|
|
|
|
|
|
|
|
|
246 |
})
|
247 |
st.session_state.generated_content['email'] = clean_email_output(generated_email)
|
248 |
except Exception as e:
|
@@ -250,13 +347,6 @@ with tab1:
|
|
250 |
else:
|
251 |
st.error("Please provide all required inputs")
|
252 |
|
253 |
-
if st.session_state.generated_content['email']:
|
254 |
-
st.markdown('<div class="output-container">', unsafe_allow_html=True)
|
255 |
-
st.markdown(st.session_state.generated_content['email'])
|
256 |
-
st.download_button("Download Email", st.session_state.generated_content['email'],
|
257 |
-
file_name="cold_email.txt", key="email_download")
|
258 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
259 |
-
|
260 |
# Cover Letter Tab
|
261 |
with tab2:
|
262 |
job_title = st.text_input("Job Title")
|
@@ -267,11 +357,15 @@ with tab2:
|
|
267 |
if job_opening_text and cv_resume_text:
|
268 |
with st.spinner("Generating..."):
|
269 |
try:
|
|
|
270 |
generated_letter = chains['cover_letter'].run({
|
271 |
"job_title": job_title,
|
272 |
"company": company_name,
|
273 |
"key_skills": key_skills,
|
274 |
-
"
|
|
|
|
|
|
|
275 |
})
|
276 |
st.session_state.generated_content['cover_letter'] = clean_cover_letter_output(generated_letter)
|
277 |
except Exception as e:
|
@@ -295,8 +389,15 @@ with tab3:
|
|
295 |
if st.button("Generate Research Statement", key="research_stmt_btn"):
|
296 |
with st.spinner("Generating..."):
|
297 |
try:
|
|
|
298 |
generated_statement = chains['research_statement'].run({
|
299 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
"key_projects": key_projects,
|
301 |
"future_goals": future_goals
|
302 |
})
|
@@ -322,12 +423,17 @@ with tab4:
|
|
322 |
if st.button("Generate SOP", key="sop_btn"):
|
323 |
with st.spinner("Generating..."):
|
324 |
try:
|
|
|
325 |
generated_sop = chains['sop'].run({
|
326 |
"motivation": motivation,
|
327 |
-
"academic_background":
|
328 |
-
"research_experiences":
|
329 |
"career_goals": career_goals,
|
330 |
-
"why_this_program": why_this_program
|
|
|
|
|
|
|
|
|
331 |
})
|
332 |
st.session_state.generated_content['sop'] = clean_sop_output(generated_sop)
|
333 |
except Exception as e:
|
|
|
59 |
if not uploaded_file:
|
60 |
return ""
|
61 |
return extract_text_from_pdf(uploaded_file) if uploaded_file.type == "application/pdf" else extract_text_from_image(uploaded_file)
|
62 |
+
def parse_resume(resume_text):
|
63 |
+
"""Extract key information from resume text"""
|
64 |
+
parsed_info = {
|
65 |
+
'education': [],
|
66 |
+
'skills': [],
|
67 |
+
'experience': [],
|
68 |
+
'projects': [],
|
69 |
+
'publications': []
|
70 |
+
}
|
71 |
+
|
72 |
+
# Find education details
|
73 |
+
edu_markers = ['Education:', 'EDUCATION', 'Academic Background']
|
74 |
+
exp_markers = ['Experience:', 'EXPERIENCE', 'Work History', 'Employment']
|
75 |
+
skill_markers = ['Skills:', 'SKILLS', 'Technical Skills', 'Technologies']
|
76 |
+
proj_markers = ['Projects:', 'PROJECTS', 'Key Projects']
|
77 |
+
pub_markers = ['Publications:', 'PUBLICATIONS', 'Research Papers']
|
78 |
+
|
79 |
+
# Helper function to extract section content
|
80 |
+
def extract_section(text, start_markers, end_markers):
|
81 |
+
content = []
|
82 |
+
for start in start_markers:
|
83 |
+
start_idx = text.find(start)
|
84 |
+
if start_idx != -1:
|
85 |
+
section_start = start_idx + len(start)
|
86 |
+
section_end = len(text)
|
87 |
+
|
88 |
+
# Find the next section marker
|
89 |
+
for end in end_markers:
|
90 |
+
next_section = text.find(end, section_start)
|
91 |
+
if next_section != -1:
|
92 |
+
section_end = min(section_end, next_section)
|
93 |
+
|
94 |
+
section_content = text[section_start:section_end].strip()
|
95 |
+
content.append(section_content)
|
96 |
+
|
97 |
+
return '\n'.join(content)
|
98 |
+
|
99 |
+
# Extract sections
|
100 |
+
all_markers = edu_markers + exp_markers + skill_markers + proj_markers + pub_markers
|
101 |
+
|
102 |
+
parsed_info['education'] = extract_section(resume_text, edu_markers, all_markers)
|
103 |
+
parsed_info['experience'] = extract_section(resume_text, exp_markers, all_markers)
|
104 |
+
parsed_info['skills'] = extract_section(resume_text, skill_markers, all_markers)
|
105 |
+
parsed_info['projects'] = extract_section(resume_text, proj_markers, all_markers)
|
106 |
+
parsed_info['publications'] = extract_section(resume_text, pub_markers, all_markers)
|
107 |
+
|
108 |
+
return parsed_info
|
109 |
|
110 |
def extract_professor_details(text):
|
111 |
professor_pattern = r"(Dr\.|Professor|Prof\.?)\s+([A-Z][a-z]+\s[A-Z][a-z]+)"
|
|
|
211 |
'email': PromptTemplate.from_template("""
|
212 |
Write ONLY a formal cold email for a research position.
|
213 |
Start with 'Dear Professor' and end with a signature.
|
|
|
|
|
214 |
|
215 |
+
Use these specific details from the CV:
|
216 |
+
Education: {education}
|
217 |
+
Relevant Experience: {experience}
|
218 |
+
Key Skills: {skills}
|
219 |
+
Notable Projects: {projects}
|
220 |
+
Publications: {publications}
|
221 |
+
|
222 |
+
Additional Context:
|
223 |
Professor: {professor_name}
|
224 |
University: {university_name}
|
225 |
Research Interests: {research_interests}
|
226 |
Why This Lab: {reason}
|
227 |
+
|
228 |
+
Guidelines:
|
229 |
+
1. Keep the email concise (max 400 words)
|
230 |
+
2. Focus on the most relevant experience and skills that match the lab's research
|
231 |
+
3. Mention 1-2 specific projects or publications that align with the lab's work
|
232 |
+
4. Include a clear statement of interest and why you're a good fit
|
233 |
+
5. End with your contact information
|
234 |
"""),
|
235 |
|
236 |
'cover_letter': PromptTemplate.from_template("""
|
237 |
Write ONLY a professional cover letter.
|
238 |
+
Use these specific details from the CV:
|
239 |
+
Education: {education}
|
240 |
+
Relevant Experience: {experience}
|
241 |
+
Technical Skills: {skills}
|
242 |
+
Notable Projects: {projects}
|
243 |
+
Publications: {publications}
|
244 |
|
245 |
+
Position Details:
|
246 |
Job Title: {job_title}
|
247 |
Company: {company}
|
248 |
+
Required Skills: {key_skills}
|
249 |
+
|
250 |
+
Guidelines:
|
251 |
+
1. Start with a formal greeting
|
252 |
+
2. Focus on experiences and skills that directly match the job requirements
|
253 |
+
3. Provide specific examples from your projects and work history
|
254 |
+
4. Demonstrate how your background makes you an ideal candidate
|
255 |
+
5. End with a professional closing
|
256 |
"""),
|
257 |
|
258 |
'research_statement': PromptTemplate.from_template("""
|
259 |
+
Write ONLY a research statement focused on your academic journey and research goals.
|
260 |
+
Use these specific details from your background:
|
261 |
+
Education: {education}
|
262 |
+
Research Experience: {experience}
|
263 |
+
Technical Skills: {skills}
|
264 |
+
Research Projects: {projects}
|
265 |
+
Publications: {publications}
|
266 |
|
267 |
+
Additional Context:
|
268 |
+
Research Background: {research_background}
|
269 |
Key Projects: {key_projects}
|
270 |
Future Goals: {future_goals}
|
271 |
+
|
272 |
+
Guidelines:
|
273 |
+
1. Describe your research journey and motivation
|
274 |
+
2. Highlight key research achievements and findings
|
275 |
+
3. Connect past work to future research goals
|
276 |
+
4. Demonstrate technical expertise and methodological knowledge
|
277 |
+
5. End with your vision for future contributions to the field
|
278 |
"""),
|
279 |
|
280 |
'sop': PromptTemplate.from_template("""
|
281 |
+
Write ONLY a Statement of Purpose (SOP).
|
282 |
+
Use these specific details from your background:
|
283 |
+
Education: {education}
|
284 |
+
Research Experience: {experience}
|
285 |
+
Technical Skills: {skills}
|
286 |
+
Notable Projects: {projects}
|
287 |
+
Publications: {publications}
|
288 |
|
289 |
+
Additional Context:
|
290 |
Motivation: {motivation}
|
291 |
+
Academic Goals: {academic_background}
|
292 |
+
Research Interests: {research_experiences}
|
293 |
+
Career Objectives: {career_goals}
|
294 |
+
Program Interest: {why_this_program}
|
295 |
+
|
296 |
+
Guidelines:
|
297 |
+
1. Tell a coherent story about your academic journey
|
298 |
+
2. Connect your background to your future goals
|
299 |
+
3. Demonstrate why you're prepared for graduate study
|
300 |
+
4. Show alignment between your interests and the program
|
301 |
+
5. Make a compelling case for why you should be admitted
|
302 |
""")
|
303 |
}
|
304 |
|
305 |
+
|
306 |
# Create LangChain instances
|
307 |
chains = {key: LLMChain(llm=llm, prompt=template) for key, template in templates.items()}
|
308 |
|
|
|
326 |
if job_opening_text and cv_resume_text:
|
327 |
with st.spinner("Generating..."):
|
328 |
try:
|
329 |
+
# Parse resume information
|
330 |
+
resume_info = parse_resume(cv_resume_text)
|
331 |
+
|
332 |
+
# Generate email with parsed information
|
333 |
generated_email = chains['email'].run({
|
334 |
"professor_name": professor_name,
|
335 |
"university_name": university_name,
|
336 |
"research_interests": research_interests,
|
337 |
"reason": reason,
|
338 |
+
"education": resume_info['education'],
|
339 |
+
"experience": resume_info['experience'],
|
340 |
+
"skills": resume_info['skills'],
|
341 |
+
"projects": resume_info['projects'],
|
342 |
+
"publications": resume_info['publications']
|
343 |
})
|
344 |
st.session_state.generated_content['email'] = clean_email_output(generated_email)
|
345 |
except Exception as e:
|
|
|
347 |
else:
|
348 |
st.error("Please provide all required inputs")
|
349 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
# Cover Letter Tab
|
351 |
with tab2:
|
352 |
job_title = st.text_input("Job Title")
|
|
|
357 |
if job_opening_text and cv_resume_text:
|
358 |
with st.spinner("Generating..."):
|
359 |
try:
|
360 |
+
resume_info = parse_resume(cv_resume_text)
|
361 |
generated_letter = chains['cover_letter'].run({
|
362 |
"job_title": job_title,
|
363 |
"company": company_name,
|
364 |
"key_skills": key_skills,
|
365 |
+
"reason": reason,
|
366 |
+
"skills": resume_info['skills'],
|
367 |
+
"education": resume_info['education'],
|
368 |
+
"experience": resume_info['experience']
|
369 |
})
|
370 |
st.session_state.generated_content['cover_letter'] = clean_cover_letter_output(generated_letter)
|
371 |
except Exception as e:
|
|
|
389 |
if st.button("Generate Research Statement", key="research_stmt_btn"):
|
390 |
with st.spinner("Generating..."):
|
391 |
try:
|
392 |
+
resume_info = parse_resume(cv_resume_text)
|
393 |
generated_statement = chains['research_statement'].run({
|
394 |
+
"reason": reason,
|
395 |
+
"education": resume_info['education'],
|
396 |
+
"experience": resume_info['experience'],
|
397 |
+
"skills": resume_info['skills'],
|
398 |
+
"projects": resume_info['projects'],
|
399 |
+
"publications": resume_info['publications']
|
400 |
+
"research_background": resume_info['publications'],
|
401 |
"key_projects": key_projects,
|
402 |
"future_goals": future_goals
|
403 |
})
|
|
|
423 |
if st.button("Generate SOP", key="sop_btn"):
|
424 |
with st.spinner("Generating..."):
|
425 |
try:
|
426 |
+
resume_info = parse_resume(cv_resume_text)
|
427 |
generated_sop = chains['sop'].run({
|
428 |
"motivation": motivation,
|
429 |
+
"academic_background": resume_info['education'],
|
430 |
+
"research_experiences": resume_info['publications'],
|
431 |
"career_goals": career_goals,
|
432 |
+
"why_this_program": why_this_program,
|
433 |
+
"experience": resume_info['experience'],
|
434 |
+
"skills": resume_info['skills'],
|
435 |
+
"projects": resume_info['projects']
|
436 |
+
|
437 |
})
|
438 |
st.session_state.generated_content['sop'] = clean_sop_output(generated_sop)
|
439 |
except Exception as e:
|