Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,11 @@ import streamlit as st
|
|
2 |
from langchain.chains import LLMChain
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
from langchain.llms import HuggingFaceHub
|
5 |
-
import fitz # PyMuPDF for PDF
|
6 |
import pytesseract
|
7 |
from PIL import Image
|
8 |
import os
|
|
|
9 |
|
10 |
# Set Hugging Face API Key (Set this in Hugging Face Secrets)
|
11 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HF_TOKEN"]
|
@@ -13,183 +14,203 @@ os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HF_TOKEN"]
|
|
13 |
# Load Free LLM from Hugging Face
|
14 |
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.3", model_kwargs={"temperature": 0.5})
|
15 |
|
16 |
-
#
|
17 |
st.set_page_config(page_title="DocuMentorAI", layout="wide")
|
18 |
st.title("📄 DocuMentorAI")
|
19 |
-
st.write("Upload your CV/Resume
|
20 |
-
|
21 |
-
# File Upload (PDF/Image)
|
22 |
-
uploaded_file = st.file_uploader("Upload your CV/Resume (PDF or Image)", type=["pdf", "png", "jpg", "jpeg"])
|
23 |
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
25 |
|
|
|
26 |
def extract_text_from_pdf(pdf_file):
|
27 |
-
# Read the file's bytes
|
28 |
pdf_bytes = pdf_file.read()
|
29 |
-
# Open the document from the bytes stream; specify the file type as PDF
|
30 |
with fitz.open(stream=pdf_bytes, filetype="pdf") as doc:
|
31 |
-
|
32 |
-
for page in doc:
|
33 |
-
text += page.get_text()
|
34 |
-
return text
|
35 |
-
|
36 |
|
|
|
37 |
def extract_text_from_image(image_file):
|
38 |
-
"""Extract text from an image using OCR."""
|
39 |
image = Image.open(image_file)
|
40 |
return pytesseract.image_to_string(image)
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
if "### Output:" in full_text:
|
57 |
-
output_text = full_text.split("### Output:", 1)[-1].strip()
|
58 |
-
# If there's an instruction-like sentence at the beginning, remove it
|
59 |
-
if "." in output_text:
|
60 |
-
output_text = output_text.split(".", 1)[-1].strip()
|
61 |
-
return output_text
|
62 |
-
return full_text.strip()
|
63 |
-
|
64 |
-
|
65 |
-
# Define LLM Prompt Templates
|
66 |
-
email_template = PromptTemplate.from_template("""
|
67 |
-
You are an AI assistant skilled in crafting personalized and engaging cold emails for research positions.
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
- Introduce yourself succinctly, highlighting relevant background.
|
72 |
-
- Clearly express your interest in the specific position and align it with your research interests.
|
73 |
-
- Articulate why you are particularly drawn to this professor's work or lab.
|
74 |
-
- Mention pertinent details from your resume that strengthen your candidacy.
|
75 |
-
- Conclude with a polite call to action and gratitude.
|
76 |
|
77 |
-
|
78 |
-
- Recipient Name: {recipient_name}
|
79 |
-
- Position Title: {position_name}
|
80 |
-
- Your Research Interests: {research_interests}
|
81 |
-
- Reason for Choosing This Professor/Lab: {reason}
|
82 |
-
- Key Resume Highlights: {resume_text}
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
### Output:
|
85 |
-
|
86 |
""")
|
87 |
|
88 |
-
|
89 |
cover_letter_template = PromptTemplate.from_template("""
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
-
|
94 |
-
-
|
95 |
-
-
|
96 |
-
- Connect your professional background to the company's mission and values.
|
97 |
-
- Include specific achievements from your resume that demonstrate your qualifications.
|
98 |
-
- End with a courteous closing and express enthusiasm for the opportunity.
|
99 |
-
|
100 |
### Input:
|
101 |
- Job Title: {job_title}
|
102 |
-
- Company
|
103 |
-
-
|
104 |
-
-
|
105 |
-
|
106 |
### Output:
|
107 |
-
|
108 |
""")
|
109 |
|
110 |
-
|
111 |
research_statement_template = PromptTemplate.from_template("""
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
-
|
116 |
-
-
|
117 |
-
- Discuss your future research goals and how they align with the program's strengths.
|
118 |
-
- Emphasize your passion and commitment to advancing knowledge in this area.
|
119 |
-
|
120 |
### Input:
|
121 |
-
- Research
|
122 |
-
-
|
123 |
-
- Future
|
124 |
-
|
125 |
### Output:
|
126 |
-
|
127 |
""")
|
128 |
|
129 |
sop_template = PromptTemplate.from_template("""
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
-
|
134 |
-
-
|
135 |
-
-
|
136 |
-
- Outline your career goals and how this program will help you achieve them.
|
137 |
-
- Highlight aspects of your resume that support your application.
|
138 |
-
|
139 |
### Input:
|
140 |
-
-
|
141 |
-
-
|
142 |
-
-
|
143 |
-
- Career
|
144 |
-
-
|
145 |
-
|
146 |
### Output:
|
147 |
-
|
148 |
""")
|
149 |
|
150 |
-
|
151 |
-
# Create LangChain Chains
|
152 |
email_chain = LLMChain(llm=llm, prompt=email_template)
|
153 |
cover_letter_chain = LLMChain(llm=llm, prompt=cover_letter_template)
|
154 |
research_statement_chain = LLMChain(llm=llm, prompt=research_statement_template)
|
155 |
sop_chain = LLMChain(llm=llm, prompt=sop_template)
|
156 |
|
157 |
-
# User Inputs
|
158 |
st.subheader("📩 Generate Application Documents")
|
159 |
-
|
160 |
tab1, tab2, tab3, tab4 = st.tabs(["Cold Email", "Cover Letter", "Research Statement", "SOP"])
|
161 |
|
|
|
162 |
with tab1:
|
163 |
-
|
164 |
-
position = st.text_input("Position Name")
|
165 |
research_interests = st.text_area("Research Interests")
|
166 |
reason = st.text_area("Why this professor/lab?")
|
|
|
167 |
if st.button("Generate Cold Email"):
|
168 |
-
email = email_chain.run({
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
with tab2:
|
173 |
job_title = st.text_input("Job Title")
|
174 |
-
|
175 |
key_skills = st.text_area("Key Skills")
|
176 |
-
if st.button("Generate Cover Letter"):
|
177 |
-
cover_letter = cover_letter_chain.run({"job_title": job_title, "company": company, "key_skills": key_skills, "resume_text": extracted_text})
|
178 |
-
final_cover_letter = get_final_output(cover_letter)
|
179 |
-
st.text_area("Generated Cover Letter", final_cover_letter, height=250)
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
with tab3:
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
final_rs = get_final_output(research_statement)
|
186 |
-
st.text_area("Generated Research Statement", final_rs, height=250)
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
with tab4:
|
189 |
-
|
190 |
-
|
|
|
191 |
career_goals = st.text_area("Career Goals")
|
|
|
|
|
192 |
if st.button("Generate SOP"):
|
193 |
-
sop = sop_chain.run({
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from langchain.chains import LLMChain
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
from langchain.llms import HuggingFaceHub
|
5 |
+
import fitz # PyMuPDF for PDF extraction
|
6 |
import pytesseract
|
7 |
from PIL import Image
|
8 |
import os
|
9 |
+
import re
|
10 |
|
11 |
# Set Hugging Face API Key (Set this in Hugging Face Secrets)
|
12 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HF_TOKEN"]
|
|
|
14 |
# Load Free LLM from Hugging Face
|
15 |
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.3", model_kwargs={"temperature": 0.5})
|
16 |
|
17 |
+
# Streamlit App Configuration
|
18 |
st.set_page_config(page_title="DocuMentorAI", layout="wide")
|
19 |
st.title("📄 DocuMentorAI")
|
20 |
+
st.write("Upload job openings and your CV/Resume to generate professional application documents.")
|
|
|
|
|
|
|
21 |
|
22 |
+
# Upload Job Opening (PDF/Image/Text)
|
23 |
+
st.subheader("📢 Upload Job Opening Details")
|
24 |
+
job_opening_file = st.file_uploader("Upload Job Opening (PDF, Image, or Text)", type=["pdf", "png", "jpg", "jpeg", "txt"])
|
25 |
|
26 |
+
# Upload CV/Resume
|
27 |
+
st.subheader("📄 Upload CV/Resume")
|
28 |
+
cv_resume_file = st.file_uploader("Upload your CV/Resume (PDF or Image)", type=["pdf", "png", "jpg", "jpeg"])
|
29 |
|
30 |
+
# Function to extract text from PDF
|
31 |
def extract_text_from_pdf(pdf_file):
|
|
|
32 |
pdf_bytes = pdf_file.read()
|
|
|
33 |
with fitz.open(stream=pdf_bytes, filetype="pdf") as doc:
|
34 |
+
return " ".join([page.get_text() for page in doc])
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Function to extract text from Image using OCR
|
37 |
def extract_text_from_image(image_file):
|
|
|
38 |
image = Image.open(image_file)
|
39 |
return pytesseract.image_to_string(image)
|
40 |
|
41 |
+
# Function to extract text from uploaded files
|
42 |
+
def extract_text(uploaded_file):
|
43 |
+
if uploaded_file:
|
44 |
+
file_type = uploaded_file.type
|
45 |
+
if file_type == "application/pdf":
|
46 |
+
return extract_text_from_pdf(uploaded_file)
|
47 |
+
else:
|
48 |
+
return extract_text_from_image(uploaded_file)
|
49 |
+
return ""
|
50 |
+
|
51 |
+
# Extract text from job opening and CV/Resume
|
52 |
+
job_opening_text = extract_text(job_opening_file)
|
53 |
+
cv_resume_text = extract_text(cv_resume_file)
|
54 |
+
|
55 |
+
# Display Extracted Text
|
56 |
+
if job_opening_text:
|
57 |
+
st.subheader("Extracted Job Opening Details")
|
58 |
+
st.text_area("Preview:", job_opening_text, height=150)
|
59 |
+
|
60 |
+
if cv_resume_text:
|
61 |
+
st.subheader("Extracted CV/Resume Details")
|
62 |
+
st.text_area("Preview:", cv_resume_text, height=150)
|
63 |
+
|
64 |
+
# Function to extract professor name, designation, and university
|
65 |
+
def extract_professor_details(text):
|
66 |
+
professor_pattern = r"(Dr\.|Professor|Prof\.?)\s+([A-Z][a-z]+\s[A-Z][a-z]+)"
|
67 |
+
university_pattern = r"(University|Institute|College|School of [A-Za-z]+)"
|
68 |
|
69 |
+
professor_match = re.search(professor_pattern, text)
|
70 |
+
university_match = re.search(university_pattern, text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
professor_name = professor_match.group(0) if professor_match else "Not Found"
|
73 |
+
university_name = university_match.group(0) if university_match else "Not Found"
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
return professor_name, university_name
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
# Extract professor details if job opening is uploaded
|
78 |
+
professor_name, university_name = extract_professor_details(job_opening_text)
|
79 |
+
|
80 |
+
# LLM Prompt Templates
|
81 |
+
email_template = PromptTemplate.from_template("""
|
82 |
+
Write a professional cold email for a research position.
|
83 |
+
- Address the professor formally.
|
84 |
+
- Introduce yourself and academic background.
|
85 |
+
- Express interest in their research.
|
86 |
+
- Highlight key skills from your CV.
|
87 |
+
- Conclude with a polite request.
|
88 |
+
### Input:
|
89 |
+
- Professor: {professor_name}
|
90 |
+
- University: {university_name}
|
91 |
+
- Research Interests: {research_interests}
|
92 |
+
- Why This Lab: {reason}
|
93 |
+
- CV Highlights: {resume_text}
|
94 |
### Output:
|
95 |
+
A well-structured, professional cold email.
|
96 |
""")
|
97 |
|
|
|
98 |
cover_letter_template = PromptTemplate.from_template("""
|
99 |
+
Write a compelling job application cover letter.
|
100 |
+
- Address the employer formally.
|
101 |
+
- Mention job title and where you found it.
|
102 |
+
- Highlight key skills and experiences.
|
103 |
+
- Relate background to the company.
|
104 |
+
- Conclude with enthusiasm.
|
|
|
|
|
|
|
|
|
105 |
### Input:
|
106 |
- Job Title: {job_title}
|
107 |
+
- Company: {company}
|
108 |
+
- Key Skills: {key_skills}
|
109 |
+
- CV Highlights: {resume_text}
|
|
|
110 |
### Output:
|
111 |
+
A strong, well-formatted cover letter.
|
112 |
""")
|
113 |
|
|
|
114 |
research_statement_template = PromptTemplate.from_template("""
|
115 |
+
Write a research statement for Ph.D. applications.
|
116 |
+
- Discuss research background and motivation.
|
117 |
+
- Explain key research experiences and findings.
|
118 |
+
- Outline future research interests and goals.
|
119 |
+
- Highlight contributions to the field.
|
|
|
|
|
|
|
120 |
### Input:
|
121 |
+
- Research Background: {research_background}
|
122 |
+
- Key Research Projects: {key_projects}
|
123 |
+
- Future Goals: {future_goals}
|
|
|
124 |
### Output:
|
125 |
+
A well-structured, professional research statement.
|
126 |
""")
|
127 |
|
128 |
sop_template = PromptTemplate.from_template("""
|
129 |
+
Write a compelling Statement of Purpose (SOP).
|
130 |
+
- Introduce motivation for graduate studies.
|
131 |
+
- Discuss academic background.
|
132 |
+
- Explain relevant experiences and research.
|
133 |
+
- Outline career goals.
|
134 |
+
- Justify fit for the program.
|
|
|
|
|
|
|
135 |
### Input:
|
136 |
+
- Motivation: {motivation}
|
137 |
+
- Academic Background: {academic_background}
|
138 |
+
- Research & Projects: {research_experiences}
|
139 |
+
- Career Goals: {career_goals}
|
140 |
+
- Why This Program: {why_this_program}
|
|
|
141 |
### Output:
|
142 |
+
A well-structured SOP.
|
143 |
""")
|
144 |
|
145 |
+
# LangChain Chains
|
|
|
146 |
email_chain = LLMChain(llm=llm, prompt=email_template)
|
147 |
cover_letter_chain = LLMChain(llm=llm, prompt=cover_letter_template)
|
148 |
research_statement_chain = LLMChain(llm=llm, prompt=research_statement_template)
|
149 |
sop_chain = LLMChain(llm=llm, prompt=sop_template)
|
150 |
|
151 |
+
# User Inputs
|
152 |
st.subheader("📩 Generate Application Documents")
|
|
|
153 |
tab1, tab2, tab3, tab4 = st.tabs(["Cold Email", "Cover Letter", "Research Statement", "SOP"])
|
154 |
|
155 |
+
# Cold Email Generation
|
156 |
with tab1:
|
157 |
+
st.write(f"🧑🏫 **Detected Professor:** {professor_name} at {university_name}")
|
|
|
158 |
research_interests = st.text_area("Research Interests")
|
159 |
reason = st.text_area("Why this professor/lab?")
|
160 |
+
|
161 |
if st.button("Generate Cold Email"):
|
162 |
+
email = email_chain.run({
|
163 |
+
"professor_name": professor_name,
|
164 |
+
"university_name": university_name,
|
165 |
+
"research_interests": research_interests,
|
166 |
+
"reason": reason,
|
167 |
+
"resume_text": cv_resume_text
|
168 |
+
})
|
169 |
+
st.text_area("Generated Cold Email", email, height=250)
|
170 |
+
|
171 |
+
# Cover Letter Generation
|
172 |
with tab2:
|
173 |
job_title = st.text_input("Job Title")
|
174 |
+
company_name = university_name if university_name != "Not Found" else st.text_input("Company/University")
|
175 |
key_skills = st.text_area("Key Skills")
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
if st.button("Generate Cover Letter"):
|
178 |
+
cover_letter = cover_letter_chain.run({
|
179 |
+
"job_title": job_title,
|
180 |
+
"company": company_name,
|
181 |
+
"key_skills": key_skills,
|
182 |
+
"resume_text": cv_resume_text
|
183 |
+
})
|
184 |
+
st.text_area("Generated Cover Letter", cover_letter, height=250)
|
185 |
+
|
186 |
+
# Research Statement Generation
|
187 |
with tab3:
|
188 |
+
research_background = st.text_area("Research Background")
|
189 |
+
key_projects = st.text_area("Key Research Projects")
|
190 |
+
future_goals = st.text_area("Future Research Goals")
|
|
|
|
|
191 |
|
192 |
+
if st.button("Generate Research Statement"):
|
193 |
+
research_statement = research_statement_chain.run({
|
194 |
+
"research_background": research_background,
|
195 |
+
"key_projects": key_projects,
|
196 |
+
"future_goals": future_goals
|
197 |
+
})
|
198 |
+
st.text_area("Generated Research Statement", research_statement, height=250)
|
199 |
+
|
200 |
+
# SOP Generation
|
201 |
with tab4:
|
202 |
+
motivation = st.text_area("Motivation for Graduate Studies")
|
203 |
+
academic_background = st.text_area("Academic Background")
|
204 |
+
research_experiences = st.text_area("Research & Projects")
|
205 |
career_goals = st.text_area("Career Goals")
|
206 |
+
why_this_program = st.text_area("Why This Program")
|
207 |
+
|
208 |
if st.button("Generate SOP"):
|
209 |
+
sop = sop_chain.run({
|
210 |
+
"motivation": motivation,
|
211 |
+
"academic_background": academic_background,
|
212 |
+
"research_experiences": research_experiences,
|
213 |
+
"career_goals": career_goals,
|
214 |
+
"why_this_program": why_this_program
|
215 |
+
})
|
216 |
+
st.text_area("Generated SOP", sop, height=250)
|