File size: 3,963 Bytes
e7d9402
397093f
 
 
 
 
 
69fcc4b
 
 
 
 
 
397093f
 
 
69fcc4b
397093f
db3ef92
 
 
 
69fcc4b
 
397093f
 
db3ef92
397093f
 
 
69fcc4b
397093f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b28488a
397093f
 
 
 
 
5808915
 
db3ef92
5808915
db3ef92
 
 
 
5808915
db3ef92
 
 
 
5808915
db3ef92
 
 
5808915
db3ef92
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load model and tokenizer directly
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/Airavata")
model = AutoModelForCausalLM.from_pretrained("ai4bharat/Airavata")

def chat_interface(user_input, assistant_input):
    # Concatenate the user and assistant inputs to simulate a chat conversation
    chat_history = f"{assistant_input} User: {user_input}"

    # Tokenize the chat history and generate the response
    inputs = tokenizer(chat_history, return_tensors="pt", max_length=256, truncation=True)
    outputs = model.generate(**inputs)
    response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    
    return response, chat_history

# Define Gradio Chat Interface
iface = gr.ChatInterface(
    chat_model=chat_interface,
    title="GPT-2 Chat Interface",
    inputs=["text", "text"],
    outputs=["text", "text"],
)

# Launch Gradio Chat Interface
iface.launch()



# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM
# import gradio as gr

# device = "cuda" if torch.cuda.is_available() else "cpu"


# def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
#     formatted_text = ""
#     for message in messages:
#         if message["role"] == "system":
#             formatted_text += "<|system|>\n" + message["content"] + "\n"
#         elif message["role"] == "user":
#             formatted_text += "<|user|>\n" + message["content"] + "\n"
#         elif message["role"] == "assistant":
#             formatted_text += "<|assistant|>\n" + message["content"].strip() + eos + "\n"
#         else:
#             raise ValueError(
#                 "Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format(
#                     message["role"]
#                 )
#             )
#     formatted_text += "<|assistant|>\n"
#     formatted_text = bos + formatted_text if add_bos else formatted_text
#     return formatted_text


# def inference(input_prompts, model, tokenizer):
#     input_prompts = [
#         create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
#         for input_prompt in input_prompts
#     ]

#     encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
#     encodings = encodings.to(device)

#     with torch.inference_mode():
#         outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=250)

#     output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)

#     input_prompts = [
#         tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
#     ]
#     output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
#     return output_texts


# model_name = "ai4bharat/Airavata"

# tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
# tokenizer.pad_token = tokenizer.eos_token
# model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
# print(f"Loading model: {model_name}")

# examples = [
#     ["मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं।"],
#     ["मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं और उनका वर्णन करें।"],
# ]

# def chat_interface(input_prompts):
#     outputs = inference(input_prompts, model, tokenizer)
#     return outputs

# gr.Interface(fn=chat_interface,
#              inputs="text",
#              outputs="text",
#              examples=examples,
#              title="CAMAI ChatBot").launch()