Spaces:
Paused
Paused
update app.py
Browse files
app.py
CHANGED
@@ -5,30 +5,30 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
5 |
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/Airavata")
|
6 |
model = AutoModelForCausalLM.from_pretrained("ai4bharat/Airavata")
|
7 |
|
8 |
-
def chat_interface(
|
9 |
-
#
|
10 |
-
|
|
|
|
|
|
|
11 |
outputs = model.generate(**inputs)
|
12 |
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
13 |
|
14 |
-
return response
|
15 |
|
16 |
# Define Gradio Chat Interface
|
17 |
iface = gr.ChatInterface(
|
18 |
chat_model=chat_interface,
|
19 |
title="GPT-2 Chat Interface",
|
20 |
-
inputs=["text"],
|
21 |
-
outputs=["text"],
|
22 |
-
examples = [
|
23 |
-
["मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं।"],
|
24 |
-
["मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं और उनका वर्णन करें।"],
|
25 |
-
],
|
26 |
)
|
27 |
|
28 |
# Launch Gradio Chat Interface
|
29 |
iface.launch()
|
30 |
|
31 |
|
|
|
32 |
# import torch
|
33 |
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
34 |
# import gradio as gr
|
|
|
5 |
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/Airavata")
|
6 |
model = AutoModelForCausalLM.from_pretrained("ai4bharat/Airavata")
|
7 |
|
8 |
+
def chat_interface(user_input, assistant_input):
|
9 |
+
# Concatenate the user and assistant inputs to simulate a chat conversation
|
10 |
+
chat_history = f"{assistant_input} User: {user_input}"
|
11 |
+
|
12 |
+
# Tokenize the chat history and generate the response
|
13 |
+
inputs = tokenizer(chat_history, return_tensors="pt", max_length=256, truncation=True)
|
14 |
outputs = model.generate(**inputs)
|
15 |
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
16 |
|
17 |
+
return response, chat_history
|
18 |
|
19 |
# Define Gradio Chat Interface
|
20 |
iface = gr.ChatInterface(
|
21 |
chat_model=chat_interface,
|
22 |
title="GPT-2 Chat Interface",
|
23 |
+
inputs=["text", "text"],
|
24 |
+
outputs=["text", "text"],
|
|
|
|
|
|
|
|
|
25 |
)
|
26 |
|
27 |
# Launch Gradio Chat Interface
|
28 |
iface.launch()
|
29 |
|
30 |
|
31 |
+
|
32 |
# import torch
|
33 |
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
34 |
# import gradio as gr
|