Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,81 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
for message in messages:
|
11 |
-
if message["role"] == "system":
|
12 |
-
formatted_text += "<|system|>\n" + message["content"] + "\n"
|
13 |
-
elif message["role"] == "user":
|
14 |
-
formatted_text += "<|user|>\n" + message["content"] + "\n"
|
15 |
-
elif message["role"] == "assistant":
|
16 |
-
formatted_text += "<|assistant|>\n" + message["content"].strip() + eos + "\n"
|
17 |
-
else:
|
18 |
-
raise ValueError(
|
19 |
-
"Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format(
|
20 |
-
message["role"]
|
21 |
-
)
|
22 |
-
)
|
23 |
-
formatted_text += "<|assistant|>\n"
|
24 |
-
formatted_text = bos + formatted_text if add_bos else formatted_text
|
25 |
-
return formatted_text
|
26 |
-
|
27 |
-
|
28 |
-
def inference(input_prompts, model, tokenizer):
|
29 |
-
input_prompts = [
|
30 |
-
create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
|
31 |
-
for input_prompt in input_prompts
|
32 |
-
]
|
33 |
-
|
34 |
-
encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
|
35 |
-
encodings = encodings.to(device)
|
36 |
-
|
37 |
-
with torch.inference_mode():
|
38 |
-
outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=250)
|
39 |
-
|
40 |
-
output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
|
41 |
-
|
42 |
-
input_prompts = [
|
43 |
-
tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
|
44 |
-
]
|
45 |
-
output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
|
46 |
-
return output_texts
|
47 |
|
48 |
|
49 |
model_name = "ai4bharat/Airavata"
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Load model and tokenizer directly
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/Airavata")
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("ai4bharat/Airavata")
|
7 |
+
|
8 |
+
def generate_response(prompt):
|
9 |
+
# Tokenize input prompt and generate response
|
10 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=256, truncation=True)
|
11 |
+
outputs = model.generate(**inputs)
|
12 |
+
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
13 |
+
|
14 |
+
return response
|
15 |
+
|
16 |
+
# Define Gradio interface
|
17 |
+
iface = gr.Interface(
|
18 |
+
fn=generate_response,
|
19 |
+
inputs=gr.Textbox(),
|
20 |
+
outputs=gr.Textbox(),
|
21 |
+
live=True,
|
22 |
+
title="CAMAI",
|
23 |
+
description="Enter a prompt to generate text.",
|
24 |
+
)
|
25 |
+
|
26 |
+
# Launch Gradio interface
|
27 |
+
iface.launch()
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
# import torch
|
34 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
35 |
+
# import gradio as gr
|
36 |
+
|
37 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
+
|
39 |
+
|
40 |
+
# def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
|
41 |
+
# formatted_text = ""
|
42 |
+
# for message in messages:
|
43 |
+
# if message["role"] == "system":
|
44 |
+
# formatted_text += "<|system|>\n" + message["content"] + "\n"
|
45 |
+
# elif message["role"] == "user":
|
46 |
+
# formatted_text += "<|user|>\n" + message["content"] + "\n"
|
47 |
+
# elif message["role"] == "assistant":
|
48 |
+
# formatted_text += "<|assistant|>\n" + message["content"].strip() + eos + "\n"
|
49 |
+
# else:
|
50 |
+
# raise ValueError(
|
51 |
+
# "Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format(
|
52 |
+
# message["role"]
|
53 |
+
# )
|
54 |
+
# )
|
55 |
+
# formatted_text += "<|assistant|>\n"
|
56 |
+
# formatted_text = bos + formatted_text if add_bos else formatted_text
|
57 |
+
# return formatted_text
|
58 |
+
|
59 |
+
|
60 |
+
# def inference(input_prompts, model, tokenizer):
|
61 |
+
# input_prompts = [
|
62 |
+
# create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
|
63 |
+
# for input_prompt in input_prompts
|
64 |
+
# ]
|
65 |
+
|
66 |
+
# encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
|
67 |
+
# encodings = encodings.to(device)
|
68 |
+
|
69 |
+
# with torch.inference_mode():
|
70 |
+
# outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=250)
|
71 |
+
|
72 |
+
# output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
|
73 |
|
74 |
+
# input_prompts = [
|
75 |
+
# tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
|
76 |
+
# ]
|
77 |
+
# output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
|
78 |
+
# return output_texts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
model_name = "ai4bharat/Airavata"
|