Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# Configuration as provided | |
config_model = { | |
"bos_token_id": 0, | |
"eos_token_id": 0, | |
"hidden_act": "silu", | |
"hidden_size": 576, | |
"initializer_range": 0.041666666666666664, | |
"intermediate_size": 1536, | |
"is_llama_config": True, | |
"max_position_embeddings": 2048, | |
"num_attention_heads": 9, | |
"num_hidden_layers": 30, | |
"num_key_value_heads": 3, | |
"pad_token_id": None, | |
"pretraining_tp": 1, | |
"rms_norm_eps": 1.0e-05, | |
"rope_interleaved": False, | |
"rope_scaling": None, | |
"rope_theta": 10000.0, | |
"tie_word_embeddings": True, | |
"use_cache": True, | |
"vocab_size": 49152 | |
} | |
# 1. Rotary Embedding | |
class LlamaRotaryEmbedding(nn.Module): | |
def __init__(self, dim: int, theta: float = 10000.0): | |
super().__init__() | |
self.dim = dim | |
self.theta = theta | |
def forward(self, x): | |
batch_size, seq_len, _ = x.size() | |
device = x.device | |
# Create the position indices | |
position = torch.arange(seq_len, dtype=torch.float32, device=device).unsqueeze(1) # Shape: (seq_len, 1) | |
freqs = torch.pow(self.theta, -torch.arange(0, self.dim, 2, dtype=torch.float32, device=device) / self.dim) # Shape: (dim/2,) | |
# Reshape freqs for einsum: Shape (dim/2, 1) -> (dim/2, 1) broadcasting with position | |
freqs = freqs.unsqueeze(1) # Shape: (dim/2, 1) | |
# Calculate sinusoidal embeddings | |
sinusoidal_embeddings = torch.einsum('i,j->ij', position.squeeze(), freqs.squeeze()) # Shape: (seq_len, dim/2) | |
# Sinusoidal encoding | |
sin = sinusoidal_embeddings.sin().unsqueeze(0) # Shape: (1, seq_len, dim/2) | |
cos = sinusoidal_embeddings.cos().unsqueeze(0) # Shape: (1, seq_len, dim/2) | |
# Concatenate the sin and cos values to create the final embedding | |
rotary_embeddings = torch.cat([sin, cos], dim=-1).unsqueeze(0) # Shape: (1, seq_len, dim) | |
# Remove the extra leading dimension (1) to match input tensor shape | |
return rotary_embeddings.squeeze(0) # Shape: (seq_len, dim) | |
''' | |
# Testing LlamaRotaryEmbedding again with the modified code | |
rotary_emb = LlamaRotaryEmbedding(dim=576, theta=10000.0) | |
input_tensor = torch.randn(2, 10, 576) # (batch_size, seq_len, hidden_size) | |
rotary_output = rotary_emb(input_tensor) | |
print(f"Rotary embedding output shape: {rotary_output.shape}") | |
''' | |
# 2. Attention Layer | |
class LlamaAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.q_proj = nn.Linear(config['hidden_size'], config['hidden_size'], bias=False) | |
self.k_proj = nn.Linear(config['hidden_size'], config['hidden_size'] // 3, bias=False) | |
self.v_proj = nn.Linear(config['hidden_size'], config['hidden_size'] // 3, bias=False) | |
self.o_proj = nn.Linear(config['hidden_size'] // 3, config['hidden_size'], bias=False) # Adjust output projection size | |
self.rope_emb = LlamaRotaryEmbedding(config['hidden_size']) | |
def forward(self, x): | |
batch_size, seq_len, _ = x.size() # Get the batch size and sequence length | |
q = self.q_proj(x) # Shape: (batch_size, seq_len, hidden_size) | |
k = self.k_proj(x) # Shape: (batch_size, seq_len, hidden_size // 3) | |
v = self.v_proj(x) # Shape: (batch_size, seq_len, hidden_size // 3) | |
# Apply rotary embeddings (positional encoding) | |
q, k = self.rope_emb(q), self.rope_emb(k) | |
# Calculate attention weights (scaled dot-product attention) | |
attn_weights = torch.matmul(q, k.transpose(-2, -1)) # Shape: (batch_size, seq_len, seq_len) | |
attn_probs = torch.nn.functional.softmax(attn_weights, dim=-1) # Shape: (batch_size, seq_len, seq_len) | |
# Apply attention to values | |
attn_output = torch.matmul(attn_probs, v) # Shape: (batch_size, seq_len, hidden_size // 3) | |
# Output projection (adjusted to match hidden_size) | |
out = self.o_proj(attn_output) # Shape: (batch_size, seq_len, hidden_size) | |
return out | |
''' | |
# Testing LlamaAttention again | |
attention_layer = LlamaAttention(config) | |
input_tensor = torch.randn(2, 10, 576) # (batch_size, seq_len, hidden_size) | |
attention_output = attention_layer(input_tensor) | |
print(f"Attention output shape: {attention_output.shape}") | |
''' | |
# 3. MLP Layer | |
class LlamaMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.gate_proj = nn.Linear(config['hidden_size'], config['intermediate_size'], bias=False) # Hidden size to intermediate size | |
self.up_proj = nn.Linear(config['intermediate_size'], config['intermediate_size'], bias=False) # Intermediate size to intermediate size | |
self.down_proj = nn.Linear(config['intermediate_size'], config['hidden_size'], bias=False) # Intermediate size to hidden size | |
self.act_fn = torch.nn.SiLU() # Activation function | |
def forward(self, x): | |
batch_size, seq_len, _ = x.size() | |
# Flatten input to (batch_size * seq_len, hidden_size) for projection | |
x = x.view(batch_size * seq_len, -1) # Shape: (batch_size * seq_len, hidden_size) | |
# Apply gate projection | |
x = self.gate_proj(x) # Shape: (batch_size * seq_len, intermediate_size) | |
x = self.act_fn(x) # Apply activation | |
# Apply up projection | |
x = self.up_proj(x) # Shape: (batch_size * seq_len, intermediate_size) | |
# Apply down projection | |
x = self.down_proj(x) # Shape: (batch_size * seq_len, hidden_size) | |
# Reshape back to (batch_size, seq_len, hidden_size) | |
x = x.view(batch_size, seq_len, -1) # Shape: (batch_size, seq_len, hidden_size) | |
return x | |
''' | |
# Test the MLP again | |
mlp_layer = LlamaMLP(config) | |
input_tensor = torch.randn(2, 10, 576) # (batch_size, seq_len, hidden_size) | |
mlp_output = mlp_layer(input_tensor) | |
print(f"MLP output shape: {mlp_output.shape}") | |
''' | |
# 4. Decoder Layer | |
class LlamaDecoderLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self_attn = LlamaAttention(config) | |
self.mlp = LlamaMLP(config) | |
self.input_layernorm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps']) | |
self.post_attention_layernorm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps']) | |
def forward(self, x): | |
# Apply input normalization | |
x = self.input_layernorm(x) | |
# Attention | |
attn_output = self.self_attn(x) | |
x = x + attn_output # Residual connection | |
# Apply post-attention layer normalization | |
x = self.post_attention_layernorm(x) | |
# Apply MLP | |
mlp_output = self.mlp(x) | |
x = x + mlp_output # Residual connection | |
return x | |
''' | |
# Testing LlamaDecoderLayer | |
decoder_layer = LlamaDecoderLayer(config) | |
input_tensor = torch.randn(10, 2, 576) # (seq_len, batch_size, hidden_size) | |
decoder_output = decoder_layer(input_tensor) | |
print(f"Decoder layer output shape: {decoder_output.shape}") | |
# 5. Model | |
class LlamaModel(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.embed_tokens = nn.Embedding(config['vocab_size'], config['hidden_size']) | |
# Partially shared decoder layers | |
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config['num_hidden_layers'])]) | |
# Separate adapters for each layer (adds more parameters) | |
self.adapters = nn.ModuleList([ | |
nn.Linear(config['hidden_size'], config['hidden_size'], bias=False) | |
for _ in range(config['num_hidden_layers']) | |
]) | |
self.norm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps']) | |
def forward(self, input_ids): | |
# Initial embedding lookup | |
x = self.embed_tokens(input_ids) | |
# Pass through transformer layers with unique adapters per layer | |
for i, layer in enumerate(self.layers): | |
x = layer(x) # Apply the i-th decoder layer | |
x = x + self.adapters[i](x) # Add per-layer adapter | |
# Apply the final layer normalization | |
x = self.norm(x) | |
return x | |
''' | |
class LlamaModel(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.embed_tokens = nn.Embedding(config['vocab_size'], config['hidden_size']) | |
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config['num_hidden_layers'])]) | |
self.norm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps']) | |
self.rotary_emb = LlamaRotaryEmbedding(config['hidden_size']) | |
def forward(self, input_ids): | |
# Initial embedding lookup | |
x = self.embed_tokens(input_ids) | |
# Pass through the transformer layers | |
for layer in self.layers: | |
x = layer(x) | |
# Apply the final layer normalization | |
x = self.norm(x) | |
return x | |
''' | |
# Testing LlamaModel | |
model = LlamaModel(config) | |
input_ids = torch.randint(0, config['vocab_size'], (10, 2)) # (seq_len, batch_size) | |
model_output = model(input_ids) | |
print(f"Model output shape: {model_output.shape}") | |
''' | |
# 6. Causal Language Model (Final Model) | |
class LlamaForCausalLM(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.model = LlamaModel(config) | |
# Share weights between the embedding and output layers | |
#self.lm_head = self.model.embed_tokens | |
self.lm_head= nn.Linear(config['hidden_size'], config['vocab_size'], bias=False) | |
def forward(self, input_ids): | |
hidden_states = self.model(input_ids) | |
logits = self.lm_head(hidden_states) | |
return logits | |
# Testing LlamaForCausalLM | |
''' | |
causal_lm_model = LlamaForCausalLM(config_model) | |
print(causal_lm_model) | |
from torchinfo import summary | |
summary( causal_lm_model ) | |
input_ids = torch.randint(0, config_model['vocab_size'], (10, 2)) # (seq_len, batch_size) | |
logits = causal_lm_model(input_ids) | |
print(f"Logits shape: {logits.shape}") | |
''' | |