Smol2TextGenerator / model_smol2.py
Shriti09's picture
Upload 3 files
f271aef verified
raw
history blame
9.95 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
# Configuration as provided
config_model = {
"bos_token_id": 0,
"eos_token_id": 0,
"hidden_act": "silu",
"hidden_size": 576,
"initializer_range": 0.041666666666666664,
"intermediate_size": 1536,
"is_llama_config": True,
"max_position_embeddings": 2048,
"num_attention_heads": 9,
"num_hidden_layers": 30,
"num_key_value_heads": 3,
"pad_token_id": None,
"pretraining_tp": 1,
"rms_norm_eps": 1.0e-05,
"rope_interleaved": False,
"rope_scaling": None,
"rope_theta": 10000.0,
"tie_word_embeddings": True,
"use_cache": True,
"vocab_size": 49152
}
# 1. Rotary Embedding
class LlamaRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0):
super().__init__()
self.dim = dim
self.theta = theta
def forward(self, x):
batch_size, seq_len, _ = x.size()
device = x.device
# Create the position indices
position = torch.arange(seq_len, dtype=torch.float32, device=device).unsqueeze(1) # Shape: (seq_len, 1)
freqs = torch.pow(self.theta, -torch.arange(0, self.dim, 2, dtype=torch.float32, device=device) / self.dim) # Shape: (dim/2,)
# Reshape freqs for einsum: Shape (dim/2, 1) -> (dim/2, 1) broadcasting with position
freqs = freqs.unsqueeze(1) # Shape: (dim/2, 1)
# Calculate sinusoidal embeddings
sinusoidal_embeddings = torch.einsum('i,j->ij', position.squeeze(), freqs.squeeze()) # Shape: (seq_len, dim/2)
# Sinusoidal encoding
sin = sinusoidal_embeddings.sin().unsqueeze(0) # Shape: (1, seq_len, dim/2)
cos = sinusoidal_embeddings.cos().unsqueeze(0) # Shape: (1, seq_len, dim/2)
# Concatenate the sin and cos values to create the final embedding
rotary_embeddings = torch.cat([sin, cos], dim=-1).unsqueeze(0) # Shape: (1, seq_len, dim)
# Remove the extra leading dimension (1) to match input tensor shape
return rotary_embeddings.squeeze(0) # Shape: (seq_len, dim)
'''
# Testing LlamaRotaryEmbedding again with the modified code
rotary_emb = LlamaRotaryEmbedding(dim=576, theta=10000.0)
input_tensor = torch.randn(2, 10, 576) # (batch_size, seq_len, hidden_size)
rotary_output = rotary_emb(input_tensor)
print(f"Rotary embedding output shape: {rotary_output.shape}")
'''
# 2. Attention Layer
class LlamaAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.q_proj = nn.Linear(config['hidden_size'], config['hidden_size'], bias=False)
self.k_proj = nn.Linear(config['hidden_size'], config['hidden_size'] // 3, bias=False)
self.v_proj = nn.Linear(config['hidden_size'], config['hidden_size'] // 3, bias=False)
self.o_proj = nn.Linear(config['hidden_size'] // 3, config['hidden_size'], bias=False) # Adjust output projection size
self.rope_emb = LlamaRotaryEmbedding(config['hidden_size'])
def forward(self, x):
batch_size, seq_len, _ = x.size() # Get the batch size and sequence length
q = self.q_proj(x) # Shape: (batch_size, seq_len, hidden_size)
k = self.k_proj(x) # Shape: (batch_size, seq_len, hidden_size // 3)
v = self.v_proj(x) # Shape: (batch_size, seq_len, hidden_size // 3)
# Apply rotary embeddings (positional encoding)
q, k = self.rope_emb(q), self.rope_emb(k)
# Calculate attention weights (scaled dot-product attention)
attn_weights = torch.matmul(q, k.transpose(-2, -1)) # Shape: (batch_size, seq_len, seq_len)
attn_probs = torch.nn.functional.softmax(attn_weights, dim=-1) # Shape: (batch_size, seq_len, seq_len)
# Apply attention to values
attn_output = torch.matmul(attn_probs, v) # Shape: (batch_size, seq_len, hidden_size // 3)
# Output projection (adjusted to match hidden_size)
out = self.o_proj(attn_output) # Shape: (batch_size, seq_len, hidden_size)
return out
'''
# Testing LlamaAttention again
attention_layer = LlamaAttention(config)
input_tensor = torch.randn(2, 10, 576) # (batch_size, seq_len, hidden_size)
attention_output = attention_layer(input_tensor)
print(f"Attention output shape: {attention_output.shape}")
'''
# 3. MLP Layer
class LlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config['hidden_size'], config['intermediate_size'], bias=False) # Hidden size to intermediate size
self.up_proj = nn.Linear(config['intermediate_size'], config['intermediate_size'], bias=False) # Intermediate size to intermediate size
self.down_proj = nn.Linear(config['intermediate_size'], config['hidden_size'], bias=False) # Intermediate size to hidden size
self.act_fn = torch.nn.SiLU() # Activation function
def forward(self, x):
batch_size, seq_len, _ = x.size()
# Flatten input to (batch_size * seq_len, hidden_size) for projection
x = x.view(batch_size * seq_len, -1) # Shape: (batch_size * seq_len, hidden_size)
# Apply gate projection
x = self.gate_proj(x) # Shape: (batch_size * seq_len, intermediate_size)
x = self.act_fn(x) # Apply activation
# Apply up projection
x = self.up_proj(x) # Shape: (batch_size * seq_len, intermediate_size)
# Apply down projection
x = self.down_proj(x) # Shape: (batch_size * seq_len, hidden_size)
# Reshape back to (batch_size, seq_len, hidden_size)
x = x.view(batch_size, seq_len, -1) # Shape: (batch_size, seq_len, hidden_size)
return x
'''
# Test the MLP again
mlp_layer = LlamaMLP(config)
input_tensor = torch.randn(2, 10, 576) # (batch_size, seq_len, hidden_size)
mlp_output = mlp_layer(input_tensor)
print(f"MLP output shape: {mlp_output.shape}")
'''
# 4. Decoder Layer
class LlamaDecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = LlamaAttention(config)
self.mlp = LlamaMLP(config)
self.input_layernorm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
self.post_attention_layernorm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
def forward(self, x):
# Apply input normalization
x = self.input_layernorm(x)
# Attention
attn_output = self.self_attn(x)
x = x + attn_output # Residual connection
# Apply post-attention layer normalization
x = self.post_attention_layernorm(x)
# Apply MLP
mlp_output = self.mlp(x)
x = x + mlp_output # Residual connection
return x
'''
# Testing LlamaDecoderLayer
decoder_layer = LlamaDecoderLayer(config)
input_tensor = torch.randn(10, 2, 576) # (seq_len, batch_size, hidden_size)
decoder_output = decoder_layer(input_tensor)
print(f"Decoder layer output shape: {decoder_output.shape}")
# 5. Model
class LlamaModel(nn.Module):
def __init__(self, config):
super().__init__()
self.embed_tokens = nn.Embedding(config['vocab_size'], config['hidden_size'])
# Partially shared decoder layers
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config['num_hidden_layers'])])
# Separate adapters for each layer (adds more parameters)
self.adapters = nn.ModuleList([
nn.Linear(config['hidden_size'], config['hidden_size'], bias=False)
for _ in range(config['num_hidden_layers'])
])
self.norm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
def forward(self, input_ids):
# Initial embedding lookup
x = self.embed_tokens(input_ids)
# Pass through transformer layers with unique adapters per layer
for i, layer in enumerate(self.layers):
x = layer(x) # Apply the i-th decoder layer
x = x + self.adapters[i](x) # Add per-layer adapter
# Apply the final layer normalization
x = self.norm(x)
return x
'''
class LlamaModel(nn.Module):
def __init__(self, config):
super().__init__()
self.embed_tokens = nn.Embedding(config['vocab_size'], config['hidden_size'])
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config['num_hidden_layers'])])
self.norm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
self.rotary_emb = LlamaRotaryEmbedding(config['hidden_size'])
def forward(self, input_ids):
# Initial embedding lookup
x = self.embed_tokens(input_ids)
# Pass through the transformer layers
for layer in self.layers:
x = layer(x)
# Apply the final layer normalization
x = self.norm(x)
return x
'''
# Testing LlamaModel
model = LlamaModel(config)
input_ids = torch.randint(0, config['vocab_size'], (10, 2)) # (seq_len, batch_size)
model_output = model(input_ids)
print(f"Model output shape: {model_output.shape}")
'''
# 6. Causal Language Model (Final Model)
class LlamaForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
self.model = LlamaModel(config)
# Share weights between the embedding and output layers
#self.lm_head = self.model.embed_tokens
self.lm_head= nn.Linear(config['hidden_size'], config['vocab_size'], bias=False)
def forward(self, input_ids):
hidden_states = self.model(input_ids)
logits = self.lm_head(hidden_states)
return logits
# Testing LlamaForCausalLM
'''
causal_lm_model = LlamaForCausalLM(config_model)
print(causal_lm_model)
from torchinfo import summary
summary( causal_lm_model )
input_ids = torch.randint(0, config_model['vocab_size'], (10, 2)) # (seq_len, batch_size)
logits = causal_lm_model(input_ids)
print(f"Logits shape: {logits.shape}")
'''