File size: 9,945 Bytes
f271aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import torch
import torch.nn as nn
import torch.nn.functional as F


# Configuration as provided
config_model = {
    "bos_token_id": 0,
    "eos_token_id": 0,
    "hidden_act": "silu",
    "hidden_size": 576,
    "initializer_range": 0.041666666666666664,
    "intermediate_size": 1536,
    "is_llama_config": True,
    "max_position_embeddings": 2048,
    "num_attention_heads": 9,
    "num_hidden_layers": 30,
    "num_key_value_heads": 3,
    "pad_token_id": None,
    "pretraining_tp": 1,
    "rms_norm_eps": 1.0e-05,
    "rope_interleaved": False,
    "rope_scaling": None,
    "rope_theta": 10000.0,
    "tie_word_embeddings": True,
    "use_cache": True,
    "vocab_size": 49152
}

# 1. Rotary Embedding
class LlamaRotaryEmbedding(nn.Module):
    def __init__(self, dim: int, theta: float = 10000.0):
        super().__init__()
        self.dim = dim
        self.theta = theta

    def forward(self, x):
        batch_size, seq_len, _ = x.size()
        device = x.device

        # Create the position indices
        position = torch.arange(seq_len, dtype=torch.float32, device=device).unsqueeze(1)  # Shape: (seq_len, 1)
        freqs = torch.pow(self.theta, -torch.arange(0, self.dim, 2, dtype=torch.float32, device=device) / self.dim)  # Shape: (dim/2,)

        # Reshape freqs for einsum: Shape (dim/2, 1) -> (dim/2, 1) broadcasting with position
        freqs = freqs.unsqueeze(1)  # Shape: (dim/2, 1)

        # Calculate sinusoidal embeddings
        sinusoidal_embeddings = torch.einsum('i,j->ij', position.squeeze(), freqs.squeeze())  # Shape: (seq_len, dim/2)

        # Sinusoidal encoding
        sin = sinusoidal_embeddings.sin().unsqueeze(0)  # Shape: (1, seq_len, dim/2)
        cos = sinusoidal_embeddings.cos().unsqueeze(0)  # Shape: (1, seq_len, dim/2)

        # Concatenate the sin and cos values to create the final embedding
        rotary_embeddings = torch.cat([sin, cos], dim=-1).unsqueeze(0)  # Shape: (1, seq_len, dim)

        # Remove the extra leading dimension (1) to match input tensor shape
        return rotary_embeddings.squeeze(0)  # Shape: (seq_len, dim)
'''
# Testing LlamaRotaryEmbedding again with the modified code
rotary_emb = LlamaRotaryEmbedding(dim=576, theta=10000.0)
input_tensor = torch.randn(2, 10, 576)  # (batch_size, seq_len, hidden_size)
rotary_output = rotary_emb(input_tensor)
print(f"Rotary embedding output shape: {rotary_output.shape}")
'''


# 2. Attention Layer
class LlamaAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.q_proj = nn.Linear(config['hidden_size'], config['hidden_size'], bias=False)
        self.k_proj = nn.Linear(config['hidden_size'], config['hidden_size'] // 3, bias=False)
        self.v_proj = nn.Linear(config['hidden_size'], config['hidden_size'] // 3, bias=False)
        self.o_proj = nn.Linear(config['hidden_size'] // 3, config['hidden_size'], bias=False)  # Adjust output projection size
        self.rope_emb = LlamaRotaryEmbedding(config['hidden_size'])

    def forward(self, x):
        batch_size, seq_len, _ = x.size()  # Get the batch size and sequence length
        q = self.q_proj(x)  # Shape: (batch_size, seq_len, hidden_size)
        k = self.k_proj(x)  # Shape: (batch_size, seq_len, hidden_size // 3)
        v = self.v_proj(x)  # Shape: (batch_size, seq_len, hidden_size // 3)

        # Apply rotary embeddings (positional encoding)
        q, k = self.rope_emb(q), self.rope_emb(k)

        # Calculate attention weights (scaled dot-product attention)
        attn_weights = torch.matmul(q, k.transpose(-2, -1))  # Shape: (batch_size, seq_len, seq_len)
        attn_probs = torch.nn.functional.softmax(attn_weights, dim=-1)  # Shape: (batch_size, seq_len, seq_len)

        # Apply attention to values
        attn_output = torch.matmul(attn_probs, v)  # Shape: (batch_size, seq_len, hidden_size // 3)

        # Output projection (adjusted to match hidden_size)
        out = self.o_proj(attn_output)  # Shape: (batch_size, seq_len, hidden_size)

        return out
'''
# Testing LlamaAttention again
attention_layer = LlamaAttention(config)
input_tensor = torch.randn(2, 10, 576)  # (batch_size, seq_len, hidden_size)
attention_output = attention_layer(input_tensor)
print(f"Attention output shape: {attention_output.shape}")
'''

# 3. MLP Layer
class LlamaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.gate_proj = nn.Linear(config['hidden_size'], config['intermediate_size'], bias=False)  # Hidden size to intermediate size
        self.up_proj = nn.Linear(config['intermediate_size'], config['intermediate_size'], bias=False)  # Intermediate size to intermediate size
        self.down_proj = nn.Linear(config['intermediate_size'], config['hidden_size'], bias=False)  # Intermediate size to hidden size
        self.act_fn = torch.nn.SiLU()  # Activation function

    def forward(self, x):
        batch_size, seq_len, _ = x.size()

        # Flatten input to (batch_size * seq_len, hidden_size) for projection
        x = x.view(batch_size * seq_len, -1)  # Shape: (batch_size * seq_len, hidden_size)

        # Apply gate projection
        x = self.gate_proj(x)  # Shape: (batch_size * seq_len, intermediate_size)
        x = self.act_fn(x)  # Apply activation

        # Apply up projection
        x = self.up_proj(x)  # Shape: (batch_size * seq_len, intermediate_size)

        # Apply down projection
        x = self.down_proj(x)  # Shape: (batch_size * seq_len, hidden_size)

        # Reshape back to (batch_size, seq_len, hidden_size)
        x = x.view(batch_size, seq_len, -1)  # Shape: (batch_size, seq_len, hidden_size)

        return x
'''
# Test the MLP again
mlp_layer = LlamaMLP(config)
input_tensor = torch.randn(2, 10, 576)  # (batch_size, seq_len, hidden_size)
mlp_output = mlp_layer(input_tensor)
print(f"MLP output shape: {mlp_output.shape}")
'''


# 4. Decoder Layer
class LlamaDecoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self_attn = LlamaAttention(config)
        self.mlp = LlamaMLP(config)
        self.input_layernorm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
        self.post_attention_layernorm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])

    def forward(self, x):
        # Apply input normalization
        x = self.input_layernorm(x)
        
        # Attention
        attn_output = self.self_attn(x)
        x = x + attn_output  # Residual connection
        
        # Apply post-attention layer normalization
        x = self.post_attention_layernorm(x)

        # Apply MLP
        mlp_output = self.mlp(x)
        x = x + mlp_output  # Residual connection
        return x
'''
# Testing LlamaDecoderLayer
decoder_layer = LlamaDecoderLayer(config)
input_tensor = torch.randn(10, 2, 576)  # (seq_len, batch_size, hidden_size)
decoder_output = decoder_layer(input_tensor)
print(f"Decoder layer output shape: {decoder_output.shape}")

# 5. Model
class LlamaModel(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.embed_tokens = nn.Embedding(config['vocab_size'], config['hidden_size'])

        # Partially shared decoder layers
        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config['num_hidden_layers'])])

        # Separate adapters for each layer (adds more parameters)
        self.adapters = nn.ModuleList([
            nn.Linear(config['hidden_size'], config['hidden_size'], bias=False)
            for _ in range(config['num_hidden_layers'])
        ])

        self.norm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])

    def forward(self, input_ids):
        # Initial embedding lookup
        x = self.embed_tokens(input_ids)

        # Pass through transformer layers with unique adapters per layer
        for i, layer in enumerate(self.layers):
            x = layer(x)  # Apply the i-th decoder layer
            x = x + self.adapters[i](x)  # Add per-layer adapter

        # Apply the final layer normalization
        x = self.norm(x)
        return x


'''
class LlamaModel(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.embed_tokens = nn.Embedding(config['vocab_size'], config['hidden_size'])
        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config['num_hidden_layers'])])
        self.norm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
        self.rotary_emb = LlamaRotaryEmbedding(config['hidden_size'])

    def forward(self, input_ids):
        # Initial embedding lookup
        x = self.embed_tokens(input_ids)

        # Pass through the transformer layers
        for layer in self.layers:
            x = layer(x)
        
        # Apply the final layer normalization
        x = self.norm(x)
        return x
'''
# Testing LlamaModel
model = LlamaModel(config)
input_ids = torch.randint(0, config['vocab_size'], (10, 2))  # (seq_len, batch_size)
model_output = model(input_ids)
print(f"Model output shape: {model_output.shape}")
'''
# 6. Causal Language Model (Final Model)
class LlamaForCausalLM(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.model = LlamaModel(config)
        # Share weights between the embedding and output layers
        #self.lm_head = self.model.embed_tokens

        self.lm_head= nn.Linear(config['hidden_size'], config['vocab_size'], bias=False)

    def forward(self, input_ids):
        hidden_states = self.model(input_ids)
        logits = self.lm_head(hidden_states)
        return logits

# Testing LlamaForCausalLM
'''
causal_lm_model = LlamaForCausalLM(config_model)
print(causal_lm_model)
from torchinfo import summary
summary( causal_lm_model )
input_ids = torch.randint(0, config_model['vocab_size'], (10, 2))  # (seq_len, batch_size)
logits = causal_lm_model(input_ids)
print(f"Logits shape: {logits.shape}")
'''