Shriti09 commited on
Commit
f271aef
·
verified ·
1 Parent(s): 95d8c80

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +92 -0
  2. model_smol2.py +260 -0
  3. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from transformers import AutoTokenizer
4
+ from model_smol2 import LlamaForCausalLM, config_model
5
+
6
+ # Instantiate the model
7
+ model = LlamaForCausalLM(config_model)
8
+
9
+ # Load the checkpoint
10
+ checkpoint_path = "/Users/shriti/Downloads/Assign13_ERAV3/deply/final_checkpoint.pt"
11
+ checkpoint = torch.load(checkpoint_path, map_location="cpu")
12
+ model.load_state_dict(checkpoint['model_state_dict'])
13
+ model.eval()
14
+
15
+ # Load tokenizer (replace with the appropriate tokenizer if you're using a custom one)
16
+ # Load the tokenizer
17
+ TOKENIZER_PATH = "HuggingFaceTB/cosmo2-tokenizer"
18
+ tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH)
19
+ if tokenizer.pad_token is None:
20
+ tokenizer.pad_token = tokenizer.eos_token if tokenizer.eos_token else "[PAD]"
21
+
22
+
23
+ # Text generation function
24
+ def generate_text(
25
+ prompt, max_length=50, temperature=0.7, top_k=50, repetition_penalty=1.2, n_gram_block=2
26
+ ):
27
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
28
+ generated_tokens = input_ids[0].tolist()
29
+
30
+ with torch.no_grad():
31
+ for _ in range(max_length):
32
+ outputs = model(input_ids) # model outputs
33
+
34
+ # Check if the output is a dictionary with logits
35
+ if isinstance(outputs, dict) and 'logits' in outputs:
36
+ logits = outputs['logits'][:, -1, :]
37
+ else:
38
+ # If not, treat the output as a plain tensor
39
+ logits = outputs[:, -1, :]
40
+
41
+ # Repetition penalty
42
+ for token_id in set(generated_tokens):
43
+ logits[:, token_id] /= repetition_penalty
44
+
45
+ # n-gram blocking
46
+ if len(generated_tokens) >= n_gram_block:
47
+ n_gram = tuple(generated_tokens[-n_gram_block:])
48
+ for token_id in set(generated_tokens):
49
+ if generated_tokens[-n_gram_block:] == list(n_gram):
50
+ logits[:, token_id] -= 1e9
51
+
52
+ logits /= temperature
53
+ top_k_logits, top_k_indices = torch.topk(logits, top_k, dim=-1)
54
+ probs = torch.softmax(top_k_logits, dim=-1)
55
+
56
+ next_token_idx = torch.multinomial(probs, num_samples=1)
57
+ next_token = top_k_indices[0, next_token_idx[0]]
58
+
59
+ generated_tokens.append(next_token.item())
60
+ input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1)
61
+
62
+ if next_token.item() == tokenizer.eos_token_id:
63
+ break
64
+
65
+ return tokenizer.decode(generated_tokens, skip_special_tokens=True)
66
+
67
+
68
+ # Gradio UI
69
+ def generate_response(prompt, max_length, temperature, top_k, repetition_penalty, n_gram_block):
70
+ return generate_text(prompt, max_length, temperature, top_k, repetition_penalty, n_gram_block)
71
+
72
+ with gr.Blocks() as demo:
73
+ gr.Markdown("# Smol2 Text Generator")
74
+ with gr.Row():
75
+ with gr.Column():
76
+ prompt_input = gr.Textbox(label="Input Prompt", placeholder="Enter your text prompt here...")
77
+ max_length = gr.Slider(label="Max Length", minimum=10, maximum=200, value=50)
78
+ temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.5, value=0.7, step=0.1)
79
+ top_k = gr.Slider(label="Top K", minimum=10, maximum=100, value=50, step=1)
80
+ repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.2, step=0.1)
81
+ n_gram_block = gr.Slider(label="N-Gram Blocking", minimum=1, maximum=5, value=2, step=1)
82
+ generate_button = gr.Button("Generate Text")
83
+ with gr.Column():
84
+ output_text = gr.Textbox(label="Generated Text", lines=10)
85
+
86
+ generate_button.click(
87
+ generate_response,
88
+ inputs=[prompt_input, max_length, temperature, top_k, repetition_penalty, n_gram_block],
89
+ outputs=[output_text],
90
+ )
91
+
92
+ demo.launch()
model_smol2.py ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ # Configuration as provided
7
+ config_model = {
8
+ "bos_token_id": 0,
9
+ "eos_token_id": 0,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 576,
12
+ "initializer_range": 0.041666666666666664,
13
+ "intermediate_size": 1536,
14
+ "is_llama_config": True,
15
+ "max_position_embeddings": 2048,
16
+ "num_attention_heads": 9,
17
+ "num_hidden_layers": 30,
18
+ "num_key_value_heads": 3,
19
+ "pad_token_id": None,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1.0e-05,
22
+ "rope_interleaved": False,
23
+ "rope_scaling": None,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": True,
26
+ "use_cache": True,
27
+ "vocab_size": 49152
28
+ }
29
+
30
+ # 1. Rotary Embedding
31
+ class LlamaRotaryEmbedding(nn.Module):
32
+ def __init__(self, dim: int, theta: float = 10000.0):
33
+ super().__init__()
34
+ self.dim = dim
35
+ self.theta = theta
36
+
37
+ def forward(self, x):
38
+ batch_size, seq_len, _ = x.size()
39
+ device = x.device
40
+
41
+ # Create the position indices
42
+ position = torch.arange(seq_len, dtype=torch.float32, device=device).unsqueeze(1) # Shape: (seq_len, 1)
43
+ freqs = torch.pow(self.theta, -torch.arange(0, self.dim, 2, dtype=torch.float32, device=device) / self.dim) # Shape: (dim/2,)
44
+
45
+ # Reshape freqs for einsum: Shape (dim/2, 1) -> (dim/2, 1) broadcasting with position
46
+ freqs = freqs.unsqueeze(1) # Shape: (dim/2, 1)
47
+
48
+ # Calculate sinusoidal embeddings
49
+ sinusoidal_embeddings = torch.einsum('i,j->ij', position.squeeze(), freqs.squeeze()) # Shape: (seq_len, dim/2)
50
+
51
+ # Sinusoidal encoding
52
+ sin = sinusoidal_embeddings.sin().unsqueeze(0) # Shape: (1, seq_len, dim/2)
53
+ cos = sinusoidal_embeddings.cos().unsqueeze(0) # Shape: (1, seq_len, dim/2)
54
+
55
+ # Concatenate the sin and cos values to create the final embedding
56
+ rotary_embeddings = torch.cat([sin, cos], dim=-1).unsqueeze(0) # Shape: (1, seq_len, dim)
57
+
58
+ # Remove the extra leading dimension (1) to match input tensor shape
59
+ return rotary_embeddings.squeeze(0) # Shape: (seq_len, dim)
60
+ '''
61
+ # Testing LlamaRotaryEmbedding again with the modified code
62
+ rotary_emb = LlamaRotaryEmbedding(dim=576, theta=10000.0)
63
+ input_tensor = torch.randn(2, 10, 576) # (batch_size, seq_len, hidden_size)
64
+ rotary_output = rotary_emb(input_tensor)
65
+ print(f"Rotary embedding output shape: {rotary_output.shape}")
66
+ '''
67
+
68
+
69
+ # 2. Attention Layer
70
+ class LlamaAttention(nn.Module):
71
+ def __init__(self, config):
72
+ super().__init__()
73
+ self.q_proj = nn.Linear(config['hidden_size'], config['hidden_size'], bias=False)
74
+ self.k_proj = nn.Linear(config['hidden_size'], config['hidden_size'] // 3, bias=False)
75
+ self.v_proj = nn.Linear(config['hidden_size'], config['hidden_size'] // 3, bias=False)
76
+ self.o_proj = nn.Linear(config['hidden_size'] // 3, config['hidden_size'], bias=False) # Adjust output projection size
77
+ self.rope_emb = LlamaRotaryEmbedding(config['hidden_size'])
78
+
79
+ def forward(self, x):
80
+ batch_size, seq_len, _ = x.size() # Get the batch size and sequence length
81
+ q = self.q_proj(x) # Shape: (batch_size, seq_len, hidden_size)
82
+ k = self.k_proj(x) # Shape: (batch_size, seq_len, hidden_size // 3)
83
+ v = self.v_proj(x) # Shape: (batch_size, seq_len, hidden_size // 3)
84
+
85
+ # Apply rotary embeddings (positional encoding)
86
+ q, k = self.rope_emb(q), self.rope_emb(k)
87
+
88
+ # Calculate attention weights (scaled dot-product attention)
89
+ attn_weights = torch.matmul(q, k.transpose(-2, -1)) # Shape: (batch_size, seq_len, seq_len)
90
+ attn_probs = torch.nn.functional.softmax(attn_weights, dim=-1) # Shape: (batch_size, seq_len, seq_len)
91
+
92
+ # Apply attention to values
93
+ attn_output = torch.matmul(attn_probs, v) # Shape: (batch_size, seq_len, hidden_size // 3)
94
+
95
+ # Output projection (adjusted to match hidden_size)
96
+ out = self.o_proj(attn_output) # Shape: (batch_size, seq_len, hidden_size)
97
+
98
+ return out
99
+ '''
100
+ # Testing LlamaAttention again
101
+ attention_layer = LlamaAttention(config)
102
+ input_tensor = torch.randn(2, 10, 576) # (batch_size, seq_len, hidden_size)
103
+ attention_output = attention_layer(input_tensor)
104
+ print(f"Attention output shape: {attention_output.shape}")
105
+ '''
106
+
107
+ # 3. MLP Layer
108
+ class LlamaMLP(nn.Module):
109
+ def __init__(self, config):
110
+ super().__init__()
111
+ self.gate_proj = nn.Linear(config['hidden_size'], config['intermediate_size'], bias=False) # Hidden size to intermediate size
112
+ self.up_proj = nn.Linear(config['intermediate_size'], config['intermediate_size'], bias=False) # Intermediate size to intermediate size
113
+ self.down_proj = nn.Linear(config['intermediate_size'], config['hidden_size'], bias=False) # Intermediate size to hidden size
114
+ self.act_fn = torch.nn.SiLU() # Activation function
115
+
116
+ def forward(self, x):
117
+ batch_size, seq_len, _ = x.size()
118
+
119
+ # Flatten input to (batch_size * seq_len, hidden_size) for projection
120
+ x = x.view(batch_size * seq_len, -1) # Shape: (batch_size * seq_len, hidden_size)
121
+
122
+ # Apply gate projection
123
+ x = self.gate_proj(x) # Shape: (batch_size * seq_len, intermediate_size)
124
+ x = self.act_fn(x) # Apply activation
125
+
126
+ # Apply up projection
127
+ x = self.up_proj(x) # Shape: (batch_size * seq_len, intermediate_size)
128
+
129
+ # Apply down projection
130
+ x = self.down_proj(x) # Shape: (batch_size * seq_len, hidden_size)
131
+
132
+ # Reshape back to (batch_size, seq_len, hidden_size)
133
+ x = x.view(batch_size, seq_len, -1) # Shape: (batch_size, seq_len, hidden_size)
134
+
135
+ return x
136
+ '''
137
+ # Test the MLP again
138
+ mlp_layer = LlamaMLP(config)
139
+ input_tensor = torch.randn(2, 10, 576) # (batch_size, seq_len, hidden_size)
140
+ mlp_output = mlp_layer(input_tensor)
141
+ print(f"MLP output shape: {mlp_output.shape}")
142
+ '''
143
+
144
+
145
+ # 4. Decoder Layer
146
+ class LlamaDecoderLayer(nn.Module):
147
+ def __init__(self, config):
148
+ super().__init__()
149
+ self.self_attn = LlamaAttention(config)
150
+ self.mlp = LlamaMLP(config)
151
+ self.input_layernorm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
152
+ self.post_attention_layernorm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
153
+
154
+ def forward(self, x):
155
+ # Apply input normalization
156
+ x = self.input_layernorm(x)
157
+
158
+ # Attention
159
+ attn_output = self.self_attn(x)
160
+ x = x + attn_output # Residual connection
161
+
162
+ # Apply post-attention layer normalization
163
+ x = self.post_attention_layernorm(x)
164
+
165
+ # Apply MLP
166
+ mlp_output = self.mlp(x)
167
+ x = x + mlp_output # Residual connection
168
+ return x
169
+ '''
170
+ # Testing LlamaDecoderLayer
171
+ decoder_layer = LlamaDecoderLayer(config)
172
+ input_tensor = torch.randn(10, 2, 576) # (seq_len, batch_size, hidden_size)
173
+ decoder_output = decoder_layer(input_tensor)
174
+ print(f"Decoder layer output shape: {decoder_output.shape}")
175
+
176
+ # 5. Model
177
+ class LlamaModel(nn.Module):
178
+ def __init__(self, config):
179
+ super().__init__()
180
+ self.embed_tokens = nn.Embedding(config['vocab_size'], config['hidden_size'])
181
+
182
+ # Partially shared decoder layers
183
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config['num_hidden_layers'])])
184
+
185
+ # Separate adapters for each layer (adds more parameters)
186
+ self.adapters = nn.ModuleList([
187
+ nn.Linear(config['hidden_size'], config['hidden_size'], bias=False)
188
+ for _ in range(config['num_hidden_layers'])
189
+ ])
190
+
191
+ self.norm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
192
+
193
+ def forward(self, input_ids):
194
+ # Initial embedding lookup
195
+ x = self.embed_tokens(input_ids)
196
+
197
+ # Pass through transformer layers with unique adapters per layer
198
+ for i, layer in enumerate(self.layers):
199
+ x = layer(x) # Apply the i-th decoder layer
200
+ x = x + self.adapters[i](x) # Add per-layer adapter
201
+
202
+ # Apply the final layer normalization
203
+ x = self.norm(x)
204
+ return x
205
+
206
+
207
+ '''
208
+ class LlamaModel(nn.Module):
209
+ def __init__(self, config):
210
+ super().__init__()
211
+ self.embed_tokens = nn.Embedding(config['vocab_size'], config['hidden_size'])
212
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config['num_hidden_layers'])])
213
+ self.norm = nn.LayerNorm(config['hidden_size'], eps=config['rms_norm_eps'])
214
+ self.rotary_emb = LlamaRotaryEmbedding(config['hidden_size'])
215
+
216
+ def forward(self, input_ids):
217
+ # Initial embedding lookup
218
+ x = self.embed_tokens(input_ids)
219
+
220
+ # Pass through the transformer layers
221
+ for layer in self.layers:
222
+ x = layer(x)
223
+
224
+ # Apply the final layer normalization
225
+ x = self.norm(x)
226
+ return x
227
+ '''
228
+ # Testing LlamaModel
229
+ model = LlamaModel(config)
230
+ input_ids = torch.randint(0, config['vocab_size'], (10, 2)) # (seq_len, batch_size)
231
+ model_output = model(input_ids)
232
+ print(f"Model output shape: {model_output.shape}")
233
+ '''
234
+ # 6. Causal Language Model (Final Model)
235
+ class LlamaForCausalLM(nn.Module):
236
+ def __init__(self, config):
237
+ super().__init__()
238
+ self.model = LlamaModel(config)
239
+ # Share weights between the embedding and output layers
240
+ #self.lm_head = self.model.embed_tokens
241
+
242
+ self.lm_head= nn.Linear(config['hidden_size'], config['vocab_size'], bias=False)
243
+
244
+ def forward(self, input_ids):
245
+ hidden_states = self.model(input_ids)
246
+ logits = self.lm_head(hidden_states)
247
+ return logits
248
+
249
+ # Testing LlamaForCausalLM
250
+ '''
251
+ causal_lm_model = LlamaForCausalLM(config_model)
252
+ print(causal_lm_model)
253
+ from torchinfo import summary
254
+ summary( causal_lm_model )
255
+ input_ids = torch.randint(0, config_model['vocab_size'], (10, 2)) # (seq_len, batch_size)
256
+ logits = causal_lm_model(input_ids)
257
+ print(f"Logits shape: {logits.shape}")
258
+ '''
259
+
260
+
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ transformers
2
+ torch
3
+ datasets
4
+ gradio