Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
import gradio as gr | |
# Base model and adapter repo | |
BASE_MODEL_NAME = "microsoft/phi-2" | |
ADAPTER_REPO = "Shriti09/Microsoft-Phi-QLora" | |
# Load the tokenizer | |
print("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME) | |
tokenizer.pad_token = tokenizer.eos_token | |
# Load the base model | |
print("Loading base model...") | |
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_NAME, device_map="auto") | |
# Load adapter weights | |
print("Loading LoRA adapter...") | |
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO) | |
# Merge adapter into base model (optional, makes inference simpler) | |
model = model.merge_and_unload() | |
# Put model in eval mode | |
model.eval() | |
# Function to generate response from prompt | |
def generate_response(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
**inputs, | |
max_length=256, | |
do_sample=True, | |
top_p=0.95, | |
temperature=0.7 | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Gradio UI | |
gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(lines=2, placeholder="Ask me something..."), | |
outputs="text", | |
title="Phi-2 QLoRA Chatbot", | |
description="Chat with Phi-2 fine-tuned with QLoRA adapters!" | |
).launch() | |