Spaces:
Sleeping
Sleeping
File size: 1,417 Bytes
3fe707b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import gradio as gr
# Base model and adapter repo
BASE_MODEL_NAME = "microsoft/phi-2"
ADAPTER_REPO = "Shriti09/Microsoft-Phi-QLora"
# Load the tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
# Load the base model
print("Loading base model...")
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_NAME, device_map="auto")
# Load adapter weights
print("Loading LoRA adapter...")
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
# Merge adapter into base model (optional, makes inference simpler)
model = model.merge_and_unload()
# Put model in eval mode
model.eval()
# Function to generate response from prompt
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_length=256,
do_sample=True,
top_p=0.95,
temperature=0.7
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Gradio UI
gr.Interface(
fn=generate_response,
inputs=gr.Textbox(lines=2, placeholder="Ask me something..."),
outputs="text",
title="Phi-2 QLoRA Chatbot",
description="Chat with Phi-2 fine-tuned with QLoRA adapters!"
).launch()
|