Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from peft import PeftModel
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Base model and adapter repo
|
7 |
+
BASE_MODEL_NAME = "microsoft/phi-2"
|
8 |
+
ADAPTER_REPO = "Shriti09/Microsoft-Phi-QLora"
|
9 |
+
|
10 |
+
# Load the tokenizer
|
11 |
+
print("Loading tokenizer...")
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME)
|
13 |
+
tokenizer.pad_token = tokenizer.eos_token
|
14 |
+
|
15 |
+
# Load the base model
|
16 |
+
print("Loading base model...")
|
17 |
+
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_NAME, device_map="auto")
|
18 |
+
|
19 |
+
# Load adapter weights
|
20 |
+
print("Loading LoRA adapter...")
|
21 |
+
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
|
22 |
+
|
23 |
+
# Merge adapter into base model (optional, makes inference simpler)
|
24 |
+
model = model.merge_and_unload()
|
25 |
+
|
26 |
+
# Put model in eval mode
|
27 |
+
model.eval()
|
28 |
+
|
29 |
+
# Function to generate response from prompt
|
30 |
+
def generate_response(prompt):
|
31 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
32 |
+
outputs = model.generate(
|
33 |
+
**inputs,
|
34 |
+
max_length=256,
|
35 |
+
do_sample=True,
|
36 |
+
top_p=0.95,
|
37 |
+
temperature=0.7
|
38 |
+
)
|
39 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
+
return response
|
41 |
+
|
42 |
+
# Gradio UI
|
43 |
+
gr.Interface(
|
44 |
+
fn=generate_response,
|
45 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask me something..."),
|
46 |
+
outputs="text",
|
47 |
+
title="Phi-2 QLoRA Chatbot",
|
48 |
+
description="Chat with Phi-2 fine-tuned with QLoRA adapters!"
|
49 |
+
).launch()
|