Spaces:
Sleeping
Sleeping
import fitz # PyMuPDF | |
import gradio as gr | |
import requests | |
from bs4 import BeautifulSoup | |
import urllib.parse | |
import random | |
import os | |
from dotenv import load_dotenv | |
load_dotenv() # Load environment variables from .env file | |
# Now replace the hard-coded token with the environment variable | |
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
_useragent_list = [ | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36", | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36", | |
] | |
# Function to extract visible text from HTML content of a webpage | |
def extract_text_from_webpage(html): | |
print("Extracting text from webpage...") | |
soup = BeautifulSoup(html, 'html.parser') | |
for script in soup(["script", "style"]): | |
script.extract() # Remove scripts and styles | |
text = soup.get_text() | |
lines = (line.strip() for line in text.splitlines()) | |
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
text = '\n'.join(chunk for chunk in chunks if chunk) | |
print(f"Extracted text length: {len(text)}") | |
return text | |
# Function to perform a Google search and retrieve results | |
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None): | |
"""Performs a Google search and returns the results.""" | |
print(f"Searching for term: {term}") | |
escaped_term = urllib.parse.quote_plus(term) | |
start = 0 | |
all_results = [] | |
max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit | |
with requests.Session() as session: | |
while start < num_results: | |
print(f"Fetching search results starting from: {start}") | |
try: | |
# Choose a random user agent | |
user_agent = random.choice(_useragent_list) | |
headers = { | |
'User-Agent': user_agent | |
} | |
print(f"Using User-Agent: {headers['User-Agent']}") | |
resp = session.get( | |
url="https://www.google.com/search", | |
headers=headers, | |
params={ | |
"q": term, | |
"num": num_results - start, | |
"hl": lang, | |
"start": start, | |
"safe": safe, | |
}, | |
timeout=timeout, | |
verify=ssl_verify, | |
) | |
resp.raise_for_status() | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching search results: {e}") | |
break | |
soup = BeautifulSoup(resp.text, "html.parser") | |
result_block = soup.find_all("div", attrs={"class": "g"}) | |
if not result_block: | |
print("No more results found.") | |
break | |
for result in result_block: | |
link = result.find("a", href=True) | |
if link: | |
link = link["href"] | |
print(f"Found link: {link}") | |
try: | |
webpage = session.get(link, headers=headers, timeout=timeout) | |
webpage.raise_for_status() | |
visible_text = extract_text_from_webpage(webpage.text) | |
if len(visible_text) > max_chars_per_page: | |
visible_text = visible_text[:max_chars_per_page] + "..." | |
all_results.append({"link": link, "text": visible_text}) | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching or processing {link}: {e}") | |
all_results.append({"link": link, "text": None}) | |
else: | |
print("No link found in result.") | |
all_results.append({"link": None, "text": None}) | |
start += len(result_block) | |
print(f"Total results fetched: {len(all_results)}") | |
return all_results | |
# Function to format the prompt for the Hugging Face API | |
def format_prompt(query, search_results, instructions): | |
formatted_results = "" | |
for result in search_results: | |
link = result["link"] | |
text = result["text"] | |
if link: | |
formatted_results += f"URL: {link}\nContent: {text}\n{'-'*80}\n" | |
else: | |
formatted_results += "No link found.\n" + '-'*80 + '\n' | |
prompt = f"{instructions}User Query: {query}\n\nWeb Search Results:\n{formatted_results}\n\nAssistant:" | |
return prompt | |
# Function to generate text using Hugging Face API | |
def generate_text(input_text, temperature=0.7, repetition_penalty=1.0, top_p=0.9): | |
print("Generating text using Hugging Face API...") | |
endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" | |
headers = { | |
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", # Use the environment variable | |
"Content-Type": "application/json" | |
} | |
data = { | |
"inputs": input_text, | |
"parameters": { | |
"max_new_tokens": 8000, # Adjust as needed | |
"temperature": temperature, | |
"repetition_penalty": repetition_penalty, | |
"top_p": top_p | |
} | |
} | |
try: | |
response = requests.post(endpoint, headers=headers, json=data) | |
response.raise_for_status() | |
# Check if response is JSON | |
try: | |
json_data = response.json() | |
except ValueError: | |
print("Response is not JSON.") | |
return None | |
# Extract generated text from response JSON | |
if isinstance(json_data, list): | |
# Handle list response (if applicable for your use case) | |
generated_text = json_data[0].get("generated_text") if json_data else None | |
elif isinstance(json_data, dict): | |
# Handle dictionary response | |
generated_text = json_data.get("generated_text") | |
else: | |
print("Unexpected response format.") | |
return None | |
if generated_text is not None: | |
print("Text generation complete using Hugging Face API.") | |
print(f"Generated text: {generated_text}") # Debugging line | |
return generated_text | |
else: | |
print("Generated text not found in response.") | |
return None | |
except requests.exceptions.RequestException as e: | |
print(f"Error generating text using Hugging Face API: {e}") | |
return None | |
# Function to read and extract text from a PDF | |
def read_pdf(file_obj): | |
with fitz.open(file_obj.name) as document: | |
text = "" | |
for page_num in range(document.page_count): | |
page = document.load_page(page_num) | |
text += page.get_text() | |
return text | |
# Function to format the prompt with instructions for text generation | |
def format_prompt_with_instructions(text, instructions): | |
prompt = f"{instructions}{text}\n\nAssistant:" | |
return prompt | |
# Function to save text to a PDF | |
def save_text_to_pdf(text, output_path): | |
print(f"Saving text to PDF at {output_path}...") | |
doc = fitz.open() # Create a new PDF document | |
page = doc.new_page() # Create a new page | |
# Set the page margins | |
margin = 50 # 50 points margin | |
page_width = page.rect.width | |
page_height = page.rect.height | |
text_width = page_width - 2 * margin | |
text_height = page_height - 2 * margin | |
# Define font size and line spacing | |
font_size = 9 | |
line_spacing = 1 * font_size | |
fontname = "times-roman" # Use a supported font name | |
# Process the text to handle line breaks and paragraphs | |
paragraphs = text.split("\n") # Split text into paragraphs | |
y_position = margin | |
for paragraph in paragraphs: | |
words = paragraph.split() | |
current_line = "" | |
for word in words: | |
word = str(word) # Ensure word is treated as string | |
# Calculate the length of the current line plus the new word | |
current_line_length = fitz.get_text_length(current_line + " " + word, fontsize=font_size, fontname=fontname) | |
if current_line_length <= text_width: | |
current_line += " " + word | |
else: | |
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) | |
y_position += line_spacing | |
if y_position + line_spacing > page_height - margin: | |
page = doc.new_page() # Add a new page if text exceeds page height | |
y_position = margin | |
current_line = word | |
# Add the last line of the paragraph | |
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname) | |
y_position += line_spacing | |
# Add extra space for new paragraph | |
y_position += line_spacing | |
if y_position + line_spacing > page_height - margin: | |
page = doc.new_page() # Add a new page if text exceeds page height | |
y_position = margin | |
doc.save(output_path) # Save the PDF to the specified path | |
print("PDF saved successfully.") | |
def get_predefined_queries(company): | |
return [ | |
f"Recent earnings for {company}", | |
f"Recent News on {company}", | |
f"Recent Credit rating of {company}", | |
f"Recent conference call transcript of {company}" | |
] | |
# Integrated function to perform web scraping, formatting, and text generation | |
def scrape_and_display(query, num_results, earnings_instructions, news_instructions, | |
credit_rating_instructions, conference_call_instructions, final_instructions, | |
web_search=True, temperature=0.7, repetition_penalty=1.0, top_p=0.9): | |
print(f"Scraping and displaying results for query: {query} with num_results: {num_results}") | |
if web_search: | |
company = query.strip() | |
predefined_queries = get_predefined_queries(company) | |
all_results = [] | |
all_summaries = [] | |
instructions = [earnings_instructions, news_instructions, credit_rating_instructions, conference_call_instructions] | |
for pq, instruction in zip(predefined_queries, instructions): | |
search_results = google_search(pq, num_results=num_results // len(predefined_queries)) | |
all_results.extend(search_results) | |
# Generate a summary for each predefined query | |
formatted_prompt = format_prompt(pq, search_results, instruction) | |
summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) | |
all_summaries.append(summary) | |
# Combine all summaries | |
combined_summary = "\n\n".join(all_summaries) | |
# Generate final summary using the combined results and final instructions | |
final_prompt = f"{final_instructions}\n\nHere are the summaries for each aspect of {company}:\n\n{combined_summary}\n\nPlease provide a comprehensive summary based on the above information:" | |
generated_summary = generate_text(final_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) | |
else: | |
formatted_prompt = format_prompt_with_instructions(query, final_instructions) | |
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p) | |
print("Scraping and display complete.") | |
if generated_summary: | |
assistant_index = generated_summary.find("Assistant:") | |
if assistant_index != -1: | |
generated_summary = generated_summary[assistant_index:] | |
else: | |
generated_summary = "Assistant: No response generated." | |
print(f"Generated summary: {generated_summary}") | |
return generated_summary | |
# Main Gradio interface function | |
def gradio_interface(query, use_pdf, pdf, num_results, earnings_instructions, news_instructions, | |
credit_rating_instructions, conference_call_instructions, final_instructions, | |
temperature, repetition_penalty, top_p): | |
if use_pdf and pdf is not None: | |
pdf_text = read_pdf(pdf) | |
generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=final_instructions, | |
web_search=False, temperature=temperature, | |
repetition_penalty=repetition_penalty, top_p=top_p) | |
else: | |
generated_summary = scrape_and_display(query, num_results=num_results, | |
earnings_instructions=earnings_instructions, | |
news_instructions=news_instructions, | |
credit_rating_instructions=credit_rating_instructions, | |
conference_call_instructions=conference_call_instructions, | |
final_instructions=final_instructions, | |
web_search=True, temperature=temperature, | |
repetition_penalty=repetition_penalty, top_p=top_p) | |
output_pdf_path = "output_summary.pdf" | |
save_text_to_pdf(generated_summary, output_pdf_path) | |
return generated_summary, output_pdf_path | |
# Update the Gradio Interface | |
gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Textbox(label="Company Name"), | |
gr.Checkbox(label="Use PDF"), | |
gr.File(label="Upload PDF"), | |
gr.Slider(minimum=4, maximum=40, step=4, value=20, label="Number of Results (total for all queries)"), | |
gr.Textbox(label="Earnings Instructions", lines=2, placeholder="Instructions for recent earnings query..."), | |
gr.Textbox(label="News Instructions", lines=2, placeholder="Instructions for recent news query..."), | |
gr.Textbox(label="Credit Rating Instructions", lines=2, placeholder="Instructions for credit rating query..."), | |
gr.Textbox(label="Conference Call Instructions", lines=2, placeholder="Instructions for conference call transcript query..."), | |
gr.Textbox(label="Final Summary Instructions", lines=2, placeholder="Instructions for the final summary..."), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"), | |
gr.Slider(minimum=1.0, maximum=2.0, value=1.0, label="Repetition Penalty"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, label="Top p") | |
], | |
outputs=["text", "file"], | |
title="Financial Analyst AI Assistant", | |
description="Enter a company name and provide specific instructions for each query. The AI will use these instructions to gather and summarize information on recent earnings, news, credit ratings, and conference call transcripts.", | |
) | |