Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -232,58 +232,101 @@ def save_text_to_pdf(text, output_path):
|
|
| 232 |
doc.save(output_path) # Save the PDF to the specified path
|
| 233 |
print("PDF saved successfully.")
|
| 234 |
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
|
| 238 |
# Integrated function to perform web scraping, formatting, and text generation
|
| 239 |
-
def scrape_and_display(query, num_results,
|
|
|
|
|
|
|
| 240 |
print(f"Scraping and displaying results for query: {query} with num_results: {num_results}")
|
|
|
|
| 241 |
if web_search:
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
else:
|
| 246 |
-
formatted_prompt = format_prompt_with_instructions(query,
|
| 247 |
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
|
|
|
|
| 248 |
print("Scraping and display complete.")
|
| 249 |
if generated_summary:
|
| 250 |
-
# Extract and return text starting from "Assistant:"
|
| 251 |
assistant_index = generated_summary.find("Assistant:")
|
| 252 |
if assistant_index != -1:
|
| 253 |
generated_summary = generated_summary[assistant_index:]
|
| 254 |
else:
|
| 255 |
generated_summary = "Assistant: No response generated."
|
| 256 |
-
print(f"Generated summary: {generated_summary}")
|
| 257 |
return generated_summary
|
| 258 |
|
|
|
|
| 259 |
# Main Gradio interface function
|
| 260 |
-
def gradio_interface(query, use_pdf, pdf, num_results,
|
|
|
|
|
|
|
| 261 |
if use_pdf and pdf is not None:
|
| 262 |
pdf_text = read_pdf(pdf)
|
| 263 |
-
generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=
|
|
|
|
|
|
|
| 264 |
else:
|
| 265 |
-
generated_summary = scrape_and_display(query, num_results=num_results,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
-
# Save the generated summary to a PDF
|
| 268 |
output_pdf_path = "output_summary.pdf"
|
| 269 |
save_text_to_pdf(generated_summary, output_pdf_path)
|
| 270 |
|
| 271 |
return generated_summary, output_pdf_path
|
| 272 |
|
| 273 |
-
#
|
| 274 |
gr.Interface(
|
| 275 |
fn=gradio_interface,
|
| 276 |
inputs=[
|
| 277 |
-
gr.Textbox(label="
|
| 278 |
gr.Checkbox(label="Use PDF"),
|
| 279 |
gr.File(label="Upload PDF"),
|
| 280 |
-
gr.Slider(minimum=
|
| 281 |
-
gr.Textbox(label="Instructions"),
|
| 282 |
-
gr.
|
| 283 |
-
gr.
|
| 284 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
],
|
| 286 |
-
outputs=["text", "file"],
|
| 287 |
title="Financial Analyst AI Assistant",
|
| 288 |
-
description="Enter
|
| 289 |
-
)
|
|
|
|
| 232 |
doc.save(output_path) # Save the PDF to the specified path
|
| 233 |
print("PDF saved successfully.")
|
| 234 |
|
| 235 |
+
def get_predefined_queries(company):
|
| 236 |
+
return [
|
| 237 |
+
f"Recent earnings for {company}",
|
| 238 |
+
f"Recent News on {company}",
|
| 239 |
+
f"Recent Credit rating of {company}",
|
| 240 |
+
f"Recent conference call transcript of {company}"
|
| 241 |
+
]
|
| 242 |
|
| 243 |
|
| 244 |
# Integrated function to perform web scraping, formatting, and text generation
|
| 245 |
+
def scrape_and_display(query, num_results, earnings_instructions, news_instructions,
|
| 246 |
+
credit_rating_instructions, conference_call_instructions, final_instructions,
|
| 247 |
+
web_search=True, temperature=0.7, repetition_penalty=1.0, top_p=0.9):
|
| 248 |
print(f"Scraping and displaying results for query: {query} with num_results: {num_results}")
|
| 249 |
+
|
| 250 |
if web_search:
|
| 251 |
+
company = query.strip()
|
| 252 |
+
predefined_queries = get_predefined_queries(company)
|
| 253 |
+
all_results = []
|
| 254 |
+
all_summaries = []
|
| 255 |
+
|
| 256 |
+
instructions = [earnings_instructions, news_instructions, credit_rating_instructions, conference_call_instructions]
|
| 257 |
+
|
| 258 |
+
for pq, instruction in zip(predefined_queries, instructions):
|
| 259 |
+
search_results = google_search(pq, num_results=num_results // len(predefined_queries))
|
| 260 |
+
all_results.extend(search_results)
|
| 261 |
+
|
| 262 |
+
# Generate a summary for each predefined query
|
| 263 |
+
formatted_prompt = format_prompt(pq, search_results, instruction)
|
| 264 |
+
summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
|
| 265 |
+
all_summaries.append(summary)
|
| 266 |
+
|
| 267 |
+
# Combine all summaries
|
| 268 |
+
combined_summary = "\n\n".join(all_summaries)
|
| 269 |
+
|
| 270 |
+
# Generate final summary using the combined results and final instructions
|
| 271 |
+
final_prompt = f"{final_instructions}\n\nHere are the summaries for each aspect of {company}:\n\n{combined_summary}\n\nPlease provide a comprehensive summary based on the above information:"
|
| 272 |
+
generated_summary = generate_text(final_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
|
| 273 |
else:
|
| 274 |
+
formatted_prompt = format_prompt_with_instructions(query, final_instructions)
|
| 275 |
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
|
| 276 |
+
|
| 277 |
print("Scraping and display complete.")
|
| 278 |
if generated_summary:
|
|
|
|
| 279 |
assistant_index = generated_summary.find("Assistant:")
|
| 280 |
if assistant_index != -1:
|
| 281 |
generated_summary = generated_summary[assistant_index:]
|
| 282 |
else:
|
| 283 |
generated_summary = "Assistant: No response generated."
|
| 284 |
+
print(f"Generated summary: {generated_summary}")
|
| 285 |
return generated_summary
|
| 286 |
|
| 287 |
+
|
| 288 |
# Main Gradio interface function
|
| 289 |
+
def gradio_interface(query, use_pdf, pdf, num_results, earnings_instructions, news_instructions,
|
| 290 |
+
credit_rating_instructions, conference_call_instructions, final_instructions,
|
| 291 |
+
temperature, repetition_penalty, top_p):
|
| 292 |
if use_pdf and pdf is not None:
|
| 293 |
pdf_text = read_pdf(pdf)
|
| 294 |
+
generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=final_instructions,
|
| 295 |
+
web_search=False, temperature=temperature,
|
| 296 |
+
repetition_penalty=repetition_penalty, top_p=top_p)
|
| 297 |
else:
|
| 298 |
+
generated_summary = scrape_and_display(query, num_results=num_results,
|
| 299 |
+
earnings_instructions=earnings_instructions,
|
| 300 |
+
news_instructions=news_instructions,
|
| 301 |
+
credit_rating_instructions=credit_rating_instructions,
|
| 302 |
+
conference_call_instructions=conference_call_instructions,
|
| 303 |
+
final_instructions=final_instructions,
|
| 304 |
+
web_search=True, temperature=temperature,
|
| 305 |
+
repetition_penalty=repetition_penalty, top_p=top_p)
|
| 306 |
|
|
|
|
| 307 |
output_pdf_path = "output_summary.pdf"
|
| 308 |
save_text_to_pdf(generated_summary, output_pdf_path)
|
| 309 |
|
| 310 |
return generated_summary, output_pdf_path
|
| 311 |
|
| 312 |
+
# Update the Gradio Interface
|
| 313 |
gr.Interface(
|
| 314 |
fn=gradio_interface,
|
| 315 |
inputs=[
|
| 316 |
+
gr.Textbox(label="Company Name"),
|
| 317 |
gr.Checkbox(label="Use PDF"),
|
| 318 |
gr.File(label="Upload PDF"),
|
| 319 |
+
gr.Slider(minimum=4, maximum=40, step=4, value=20, label="Number of Results (total for all queries)"),
|
| 320 |
+
gr.Textbox(label="Earnings Instructions", lines=2, placeholder="Instructions for recent earnings query..."),
|
| 321 |
+
gr.Textbox(label="News Instructions", lines=2, placeholder="Instructions for recent news query..."),
|
| 322 |
+
gr.Textbox(label="Credit Rating Instructions", lines=2, placeholder="Instructions for credit rating query..."),
|
| 323 |
+
gr.Textbox(label="Conference Call Instructions", lines=2, placeholder="Instructions for conference call transcript query..."),
|
| 324 |
+
gr.Textbox(label="Final Summary Instructions", lines=2, placeholder="Instructions for the final summary..."),
|
| 325 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"),
|
| 326 |
+
gr.Slider(minimum=1.0, maximum=2.0, value=1.0, label="Repetition Penalty"),
|
| 327 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, label="Top p")
|
| 328 |
],
|
| 329 |
+
outputs=["text", "file"],
|
| 330 |
title="Financial Analyst AI Assistant",
|
| 331 |
+
description="Enter a company name and provide specific instructions for each query. The AI will use these instructions to gather and summarize information on recent earnings, news, credit ratings, and conference call transcripts.",
|
| 332 |
+
)
|