File size: 15,506 Bytes
c1cdf7c
 
a2335c5
 
c1cdf7c
 
a2335c5
c1cdf7c
664e897
c1cdf7c
a2335c5
c1cdf7c
 
a2335c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1cdf7c
a2335c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1cdf7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a82a747
c1cdf7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34054e0
c1cdf7c
 
 
 
a65ba38
c1cdf7c
 
 
 
 
a65ba38
c1cdf7c
 
 
 
 
 
34054e0
c1cdf7c
 
 
 
34054e0
c1cdf7c
 
 
a65ba38
c1cdf7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60fab0
 
 
 
 
 
 
c1cdf7c
 
 
d60fab0
 
 
c1cdf7c
d60fab0
c1cdf7c
d60fab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1cdf7c
d60fab0
c1cdf7c
d60fab0
c1cdf7c
 
 
 
 
 
 
d60fab0
c1cdf7c
 
d60fab0
c1cdf7c
d60fab0
 
 
c1cdf7c
 
d60fab0
 
 
c1cdf7c
d60fab0
 
 
 
 
 
 
 
c1cdf7c
 
 
 
 
34054e0
d60fab0
c1cdf7c
 
 
d60fab0
c1cdf7c
 
d60fab0
 
 
 
 
 
 
 
 
c1cdf7c
d60fab0
c1cdf7c
d60fab0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import fitz  # PyMuPDF
import gradio as gr
import requests
from bs4 import BeautifulSoup
import urllib.parse
import random
import os
from dotenv import load_dotenv

load_dotenv()  # Load environment variables from .env file

# Now replace the hard-coded token with the environment variable
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

_useragent_list = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]

# Function to extract visible text from HTML content of a webpage
def extract_text_from_webpage(html):
    print("Extracting text from webpage...")
    soup = BeautifulSoup(html, 'html.parser')
    for script in soup(["script", "style"]):
        script.extract()  # Remove scripts and styles
    text = soup.get_text()
    lines = (line.strip() for line in text.splitlines())
    chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
    text = '\n'.join(chunk for chunk in chunks if chunk)
    print(f"Extracted text length: {len(text)}")
    return text

# Function to perform a Google search and retrieve results
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
    """Performs a Google search and returns the results."""
    print(f"Searching for term: {term}")
    escaped_term = urllib.parse.quote_plus(term)
    start = 0
    all_results = []
    max_chars_per_page = 8000  # Limit the number of characters from each webpage to stay under the token limit
    
    with requests.Session() as session:
        while start < num_results:
            print(f"Fetching search results starting from: {start}")
            try:
                # Choose a random user agent
                user_agent = random.choice(_useragent_list)
                headers = {
                    'User-Agent': user_agent
                }
                print(f"Using User-Agent: {headers['User-Agent']}")
                
                resp = session.get(
                    url="https://www.google.com/search",
                    headers=headers,
                    params={
                        "q": term,
                        "num": num_results - start,
                        "hl": lang,
                        "start": start,
                        "safe": safe,
                    },
                    timeout=timeout,
                    verify=ssl_verify,
                )
                resp.raise_for_status()
            except requests.exceptions.RequestException as e:
                print(f"Error fetching search results: {e}")
                break
            
            soup = BeautifulSoup(resp.text, "html.parser")
            result_block = soup.find_all("div", attrs={"class": "g"})
            if not result_block:
                print("No more results found.")
                break
            for result in result_block:
                link = result.find("a", href=True)
                if link:
                    link = link["href"]
                    print(f"Found link: {link}")
                    try:
                        webpage = session.get(link, headers=headers, timeout=timeout)
                        webpage.raise_for_status()
                        visible_text = extract_text_from_webpage(webpage.text)
                        if len(visible_text) > max_chars_per_page:
                            visible_text = visible_text[:max_chars_per_page] + "..."
                        all_results.append({"link": link, "text": visible_text})
                    except requests.exceptions.RequestException as e:
                        print(f"Error fetching or processing {link}: {e}")
                        all_results.append({"link": link, "text": None})
                else:
                    print("No link found in result.")
                    all_results.append({"link": None, "text": None})
            start += len(result_block)
    print(f"Total results fetched: {len(all_results)}")
    return all_results

# Function to format the prompt for the Hugging Face API
def format_prompt(query, search_results, instructions):
    formatted_results = ""
    for result in search_results:
        link = result["link"]
        text = result["text"]
        if link:
            formatted_results += f"URL: {link}\nContent: {text}\n{'-'*80}\n"
        else:
            formatted_results += "No link found.\n" + '-'*80 + '\n'

    prompt = f"{instructions}User Query: {query}\n\nWeb Search Results:\n{formatted_results}\n\nAssistant:"
    return prompt

# Function to generate text using Hugging Face API
def generate_text(input_text, temperature=0.7, repetition_penalty=1.0, top_p=0.9):
    print("Generating text using Hugging Face API...")
    endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
    headers = {
        "Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}",  # Use the environment variable
        "Content-Type": "application/json"
    }
    data = {
        "inputs": input_text,
        "parameters": {
            "max_new_tokens": 8000,  # Adjust as needed
            "temperature": temperature,
            "repetition_penalty": repetition_penalty,
            "top_p": top_p
        }
    }

    try:
        response = requests.post(endpoint, headers=headers, json=data)
        response.raise_for_status()

        # Check if response is JSON
        try:
            json_data = response.json()
        except ValueError:
            print("Response is not JSON.")
            return None

        # Extract generated text from response JSON
        if isinstance(json_data, list):
            # Handle list response (if applicable for your use case)
            generated_text = json_data[0].get("generated_text") if json_data else None
        elif isinstance(json_data, dict):
            # Handle dictionary response
            generated_text = json_data.get("generated_text")
        else:
            print("Unexpected response format.")
            return None

        if generated_text is not None:
            print("Text generation complete using Hugging Face API.")
            print(f"Generated text: {generated_text}")  # Debugging line
            return generated_text
        else:
            print("Generated text not found in response.")
            return None

    except requests.exceptions.RequestException as e:
        print(f"Error generating text using Hugging Face API: {e}")
        return None

# Function to read and extract text from a PDF
def read_pdf(file_obj):
    with fitz.open(file_obj.name) as document:
        text = ""
        for page_num in range(document.page_count):
            page = document.load_page(page_num)
            text += page.get_text()
        return text

# Function to format the prompt with instructions for text generation
def format_prompt_with_instructions(text, instructions):
    prompt = f"{instructions}{text}\n\nAssistant:"
    return prompt

# Function to save text to a PDF
def save_text_to_pdf(text, output_path):
    print(f"Saving text to PDF at {output_path}...")
    doc = fitz.open()  # Create a new PDF document
    page = doc.new_page()  # Create a new page

    # Set the page margins
    margin = 50  # 50 points margin
    page_width = page.rect.width
    page_height = page.rect.height
    text_width = page_width - 2 * margin
    text_height = page_height - 2 * margin

    # Define font size and line spacing
    font_size = 9
    line_spacing = 1 * font_size
    fontname = "times-roman"  # Use a supported font name

    # Process the text to handle line breaks and paragraphs
    paragraphs = text.split("\n")  # Split text into paragraphs
    y_position = margin

    for paragraph in paragraphs:
        words = paragraph.split()
        current_line = ""

        for word in words:
            word = str(word)  # Ensure word is treated as string
            # Calculate the length of the current line plus the new word
            current_line_length = fitz.get_text_length(current_line + " " + word, fontsize=font_size, fontname=fontname)
            if current_line_length <= text_width:
                current_line += " " + word
            else:
                page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname)
                y_position += line_spacing
                if y_position + line_spacing > page_height - margin:
                    page = doc.new_page()  # Add a new page if text exceeds page height
                    y_position = margin
                current_line = word

        # Add the last line of the paragraph
        page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname)
        y_position += line_spacing

        # Add extra space for new paragraph
        y_position += line_spacing
        if y_position + line_spacing > page_height - margin:
            page = doc.new_page()  # Add a new page if text exceeds page height
            y_position = margin

    doc.save(output_path)  # Save the PDF to the specified path
    print("PDF saved successfully.")

def get_predefined_queries(company):
    return [
        f"Recent earnings for {company}",
        f"Recent News on {company}",
        f"Recent Credit rating of {company}",
        f"Recent conference call transcript of {company}"
    ]


# Integrated function to perform web scraping, formatting, and text generation
def scrape_and_display(query, num_results, earnings_instructions, news_instructions, 
                       credit_rating_instructions, conference_call_instructions, final_instructions, 
                       web_search=True, temperature=0.7, repetition_penalty=1.0, top_p=0.9):
    print(f"Scraping and displaying results for query: {query} with num_results: {num_results}")
    
    if web_search:
        company = query.strip()
        predefined_queries = get_predefined_queries(company)
        all_results = []
        all_summaries = []
        
        instructions = [earnings_instructions, news_instructions, credit_rating_instructions, conference_call_instructions]
        
        for pq, instruction in zip(predefined_queries, instructions):
            search_results = google_search(pq, num_results=num_results // len(predefined_queries))
            all_results.extend(search_results)
            
            # Generate a summary for each predefined query
            formatted_prompt = format_prompt(pq, search_results, instruction)
            summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
            all_summaries.append(summary)
        
        # Combine all summaries
        combined_summary = "\n\n".join(all_summaries)
        
        # Generate final summary using the combined results and final instructions
        final_prompt = f"{final_instructions}\n\nHere are the summaries for each aspect of {company}:\n\n{combined_summary}\n\nPlease provide a comprehensive summary based on the above information:"
        generated_summary = generate_text(final_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
    else:
        formatted_prompt = format_prompt_with_instructions(query, final_instructions)
        generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
    
    print("Scraping and display complete.")
    if generated_summary:
        assistant_index = generated_summary.find("Assistant:")
        if assistant_index != -1:
            generated_summary = generated_summary[assistant_index:]
        else:
            generated_summary = "Assistant: No response generated."
    print(f"Generated summary: {generated_summary}")
    return generated_summary


# Main Gradio interface function
def gradio_interface(query, use_pdf, pdf, num_results, earnings_instructions, news_instructions, 
                     credit_rating_instructions, conference_call_instructions, final_instructions, 
                     temperature, repetition_penalty, top_p):
    if use_pdf and pdf is not None:
        pdf_text = read_pdf(pdf)
        generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=final_instructions, 
                                               web_search=False, temperature=temperature, 
                                               repetition_penalty=repetition_penalty, top_p=top_p)
    else:
        generated_summary = scrape_and_display(query, num_results=num_results, 
                                               earnings_instructions=earnings_instructions,
                                               news_instructions=news_instructions,
                                               credit_rating_instructions=credit_rating_instructions,
                                               conference_call_instructions=conference_call_instructions,
                                               final_instructions=final_instructions,
                                               web_search=True, temperature=temperature, 
                                               repetition_penalty=repetition_penalty, top_p=top_p)
    
    output_pdf_path = "output_summary.pdf"
    save_text_to_pdf(generated_summary, output_pdf_path)
    
    return generated_summary, output_pdf_path

# Update the Gradio Interface
gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(label="Company Name"),
        gr.Checkbox(label="Use PDF"),
        gr.File(label="Upload PDF"),
        gr.Slider(minimum=4, maximum=40, step=4, value=20, label="Number of Results (total for all queries)"),
        gr.Textbox(label="Earnings Instructions", lines=2, placeholder="Instructions for recent earnings query..."),
        gr.Textbox(label="News Instructions", lines=2, placeholder="Instructions for recent news query..."),
        gr.Textbox(label="Credit Rating Instructions", lines=2, placeholder="Instructions for credit rating query..."),
        gr.Textbox(label="Conference Call Instructions", lines=2, placeholder="Instructions for conference call transcript query..."),
        gr.Textbox(label="Final Summary Instructions", lines=2, placeholder="Instructions for the final summary..."),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"),
        gr.Slider(minimum=1.0, maximum=2.0, value=1.0, label="Repetition Penalty"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.9, label="Top p")
    ],
    outputs=["text", "file"],
    title="Financial Analyst AI Assistant",
    description="Enter a company name and provide specific instructions for each query. The AI will use these instructions to gather and summarize information on recent earnings, news, credit ratings, and conference call transcripts.",
)