Spaces:
Sleeping
Sleeping
File size: 15,506 Bytes
c1cdf7c a2335c5 c1cdf7c a2335c5 c1cdf7c 664e897 c1cdf7c a2335c5 c1cdf7c a2335c5 c1cdf7c a2335c5 c1cdf7c a82a747 c1cdf7c 34054e0 c1cdf7c a65ba38 c1cdf7c a65ba38 c1cdf7c 34054e0 c1cdf7c 34054e0 c1cdf7c a65ba38 c1cdf7c d60fab0 c1cdf7c d60fab0 c1cdf7c d60fab0 c1cdf7c d60fab0 c1cdf7c d60fab0 c1cdf7c d60fab0 c1cdf7c d60fab0 c1cdf7c d60fab0 c1cdf7c d60fab0 c1cdf7c d60fab0 c1cdf7c d60fab0 c1cdf7c 34054e0 d60fab0 c1cdf7c d60fab0 c1cdf7c d60fab0 c1cdf7c d60fab0 c1cdf7c d60fab0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import fitz # PyMuPDF
import gradio as gr
import requests
from bs4 import BeautifulSoup
import urllib.parse
import random
import os
from dotenv import load_dotenv
load_dotenv() # Load environment variables from .env file
# Now replace the hard-coded token with the environment variable
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
_useragent_list = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]
# Function to extract visible text from HTML content of a webpage
def extract_text_from_webpage(html):
print("Extracting text from webpage...")
soup = BeautifulSoup(html, 'html.parser')
for script in soup(["script", "style"]):
script.extract() # Remove scripts and styles
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
print(f"Extracted text length: {len(text)}")
return text
# Function to perform a Google search and retrieve results
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
"""Performs a Google search and returns the results."""
print(f"Searching for term: {term}")
escaped_term = urllib.parse.quote_plus(term)
start = 0
all_results = []
max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit
with requests.Session() as session:
while start < num_results:
print(f"Fetching search results starting from: {start}")
try:
# Choose a random user agent
user_agent = random.choice(_useragent_list)
headers = {
'User-Agent': user_agent
}
print(f"Using User-Agent: {headers['User-Agent']}")
resp = session.get(
url="https://www.google.com/search",
headers=headers,
params={
"q": term,
"num": num_results - start,
"hl": lang,
"start": start,
"safe": safe,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"Error fetching search results: {e}")
break
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
if not result_block:
print("No more results found.")
break
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
print(f"Found link: {link}")
try:
webpage = session.get(link, headers=headers, timeout=timeout)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page] + "..."
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException as e:
print(f"Error fetching or processing {link}: {e}")
all_results.append({"link": link, "text": None})
else:
print("No link found in result.")
all_results.append({"link": None, "text": None})
start += len(result_block)
print(f"Total results fetched: {len(all_results)}")
return all_results
# Function to format the prompt for the Hugging Face API
def format_prompt(query, search_results, instructions):
formatted_results = ""
for result in search_results:
link = result["link"]
text = result["text"]
if link:
formatted_results += f"URL: {link}\nContent: {text}\n{'-'*80}\n"
else:
formatted_results += "No link found.\n" + '-'*80 + '\n'
prompt = f"{instructions}User Query: {query}\n\nWeb Search Results:\n{formatted_results}\n\nAssistant:"
return prompt
# Function to generate text using Hugging Face API
def generate_text(input_text, temperature=0.7, repetition_penalty=1.0, top_p=0.9):
print("Generating text using Hugging Face API...")
endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
headers = {
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", # Use the environment variable
"Content-Type": "application/json"
}
data = {
"inputs": input_text,
"parameters": {
"max_new_tokens": 8000, # Adjust as needed
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"top_p": top_p
}
}
try:
response = requests.post(endpoint, headers=headers, json=data)
response.raise_for_status()
# Check if response is JSON
try:
json_data = response.json()
except ValueError:
print("Response is not JSON.")
return None
# Extract generated text from response JSON
if isinstance(json_data, list):
# Handle list response (if applicable for your use case)
generated_text = json_data[0].get("generated_text") if json_data else None
elif isinstance(json_data, dict):
# Handle dictionary response
generated_text = json_data.get("generated_text")
else:
print("Unexpected response format.")
return None
if generated_text is not None:
print("Text generation complete using Hugging Face API.")
print(f"Generated text: {generated_text}") # Debugging line
return generated_text
else:
print("Generated text not found in response.")
return None
except requests.exceptions.RequestException as e:
print(f"Error generating text using Hugging Face API: {e}")
return None
# Function to read and extract text from a PDF
def read_pdf(file_obj):
with fitz.open(file_obj.name) as document:
text = ""
for page_num in range(document.page_count):
page = document.load_page(page_num)
text += page.get_text()
return text
# Function to format the prompt with instructions for text generation
def format_prompt_with_instructions(text, instructions):
prompt = f"{instructions}{text}\n\nAssistant:"
return prompt
# Function to save text to a PDF
def save_text_to_pdf(text, output_path):
print(f"Saving text to PDF at {output_path}...")
doc = fitz.open() # Create a new PDF document
page = doc.new_page() # Create a new page
# Set the page margins
margin = 50 # 50 points margin
page_width = page.rect.width
page_height = page.rect.height
text_width = page_width - 2 * margin
text_height = page_height - 2 * margin
# Define font size and line spacing
font_size = 9
line_spacing = 1 * font_size
fontname = "times-roman" # Use a supported font name
# Process the text to handle line breaks and paragraphs
paragraphs = text.split("\n") # Split text into paragraphs
y_position = margin
for paragraph in paragraphs:
words = paragraph.split()
current_line = ""
for word in words:
word = str(word) # Ensure word is treated as string
# Calculate the length of the current line plus the new word
current_line_length = fitz.get_text_length(current_line + " " + word, fontsize=font_size, fontname=fontname)
if current_line_length <= text_width:
current_line += " " + word
else:
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname)
y_position += line_spacing
if y_position + line_spacing > page_height - margin:
page = doc.new_page() # Add a new page if text exceeds page height
y_position = margin
current_line = word
# Add the last line of the paragraph
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname)
y_position += line_spacing
# Add extra space for new paragraph
y_position += line_spacing
if y_position + line_spacing > page_height - margin:
page = doc.new_page() # Add a new page if text exceeds page height
y_position = margin
doc.save(output_path) # Save the PDF to the specified path
print("PDF saved successfully.")
def get_predefined_queries(company):
return [
f"Recent earnings for {company}",
f"Recent News on {company}",
f"Recent Credit rating of {company}",
f"Recent conference call transcript of {company}"
]
# Integrated function to perform web scraping, formatting, and text generation
def scrape_and_display(query, num_results, earnings_instructions, news_instructions,
credit_rating_instructions, conference_call_instructions, final_instructions,
web_search=True, temperature=0.7, repetition_penalty=1.0, top_p=0.9):
print(f"Scraping and displaying results for query: {query} with num_results: {num_results}")
if web_search:
company = query.strip()
predefined_queries = get_predefined_queries(company)
all_results = []
all_summaries = []
instructions = [earnings_instructions, news_instructions, credit_rating_instructions, conference_call_instructions]
for pq, instruction in zip(predefined_queries, instructions):
search_results = google_search(pq, num_results=num_results // len(predefined_queries))
all_results.extend(search_results)
# Generate a summary for each predefined query
formatted_prompt = format_prompt(pq, search_results, instruction)
summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
all_summaries.append(summary)
# Combine all summaries
combined_summary = "\n\n".join(all_summaries)
# Generate final summary using the combined results and final instructions
final_prompt = f"{final_instructions}\n\nHere are the summaries for each aspect of {company}:\n\n{combined_summary}\n\nPlease provide a comprehensive summary based on the above information:"
generated_summary = generate_text(final_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
else:
formatted_prompt = format_prompt_with_instructions(query, final_instructions)
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
print("Scraping and display complete.")
if generated_summary:
assistant_index = generated_summary.find("Assistant:")
if assistant_index != -1:
generated_summary = generated_summary[assistant_index:]
else:
generated_summary = "Assistant: No response generated."
print(f"Generated summary: {generated_summary}")
return generated_summary
# Main Gradio interface function
def gradio_interface(query, use_pdf, pdf, num_results, earnings_instructions, news_instructions,
credit_rating_instructions, conference_call_instructions, final_instructions,
temperature, repetition_penalty, top_p):
if use_pdf and pdf is not None:
pdf_text = read_pdf(pdf)
generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=final_instructions,
web_search=False, temperature=temperature,
repetition_penalty=repetition_penalty, top_p=top_p)
else:
generated_summary = scrape_and_display(query, num_results=num_results,
earnings_instructions=earnings_instructions,
news_instructions=news_instructions,
credit_rating_instructions=credit_rating_instructions,
conference_call_instructions=conference_call_instructions,
final_instructions=final_instructions,
web_search=True, temperature=temperature,
repetition_penalty=repetition_penalty, top_p=top_p)
output_pdf_path = "output_summary.pdf"
save_text_to_pdf(generated_summary, output_pdf_path)
return generated_summary, output_pdf_path
# Update the Gradio Interface
gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Company Name"),
gr.Checkbox(label="Use PDF"),
gr.File(label="Upload PDF"),
gr.Slider(minimum=4, maximum=40, step=4, value=20, label="Number of Results (total for all queries)"),
gr.Textbox(label="Earnings Instructions", lines=2, placeholder="Instructions for recent earnings query..."),
gr.Textbox(label="News Instructions", lines=2, placeholder="Instructions for recent news query..."),
gr.Textbox(label="Credit Rating Instructions", lines=2, placeholder="Instructions for credit rating query..."),
gr.Textbox(label="Conference Call Instructions", lines=2, placeholder="Instructions for conference call transcript query..."),
gr.Textbox(label="Final Summary Instructions", lines=2, placeholder="Instructions for the final summary..."),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"),
gr.Slider(minimum=1.0, maximum=2.0, value=1.0, label="Repetition Penalty"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, label="Top p")
],
outputs=["text", "file"],
title="Financial Analyst AI Assistant",
description="Enter a company name and provide specific instructions for each query. The AI will use these instructions to gather and summarize information on recent earnings, news, credit ratings, and conference call transcripts.",
)
|