Spaces:
Sleeping
Sleeping
File size: 10,381 Bytes
5090140 28ed44f 177c5b5 28ed44f 0c730b1 10660a7 bb706d3 462aa5d 10660a7 462aa5d 54eab8b 462aa5d 28ed44f 0ccfbeb 28ed44f 8b05473 462aa5d c8302a1 462aa5d 28ed44f 041d8cf 462aa5d c8302a1 462aa5d ddc0536 462aa5d ddc0536 462aa5d ddc0536 462aa5d ddc0536 28ed44f 8da6a04 687c2f0 8da6a04 10660a7 0ccfbeb 10660a7 40aa611 10660a7 0ccfbeb 10660a7 1dc5b0f 10660a7 54eab8b 10660a7 1dc5b0f 10660a7 4d152e0 10660a7 4d152e0 10660a7 1dc5b0f 4d152e0 10660a7 4d152e0 10660a7 1dc5b0f 8b01918 4d152e0 8b01918 10660a7 54eab8b 462aa5d 8f325c3 f8cc2f7 462aa5d ebcb412 462aa5d ebcb412 462aa5d ebcb412 462aa5d ebcb412 462aa5d 673cc44 462aa5d d32ce41 462aa5d 34461d3 462aa5d a491b68 462aa5d feeb0e7 462aa5d feeb0e7 462aa5d 47402cb 8b01918 462aa5d 8da6a04 0f075d7 8b01918 d613eb7 8b01918 462aa5d 8da6a04 0f075d7 8b01918 462aa5d 8b01918 462aa5d c86dfe0 8b01918 8da6a04 8b01918 3d30d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import json
import re
import gradio as gr
import pandas as pd
import requests
import random
import urllib.parse
from tempfile import NamedTemporaryFile
from typing import List
from bs4 import BeautifulSoup
import logging
from duckduckgo_search import ddg
from langchain_community.llms import HuggingFaceHub
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_core.documents import Document
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
# Global variables
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
def get_model(temperature, top_p, repetition_penalty):
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"max_length": 1000
},
huggingfacehub_api_token=huggingface_token
)
def load_document(file: NamedTemporaryFile) -> List[Document]:
loader = PyPDFLoader(file.name)
return loader.load_and_split()
def update_vectors(files):
if not files:
return "Please upload at least one PDF file."
embed = get_embeddings()
total_chunks = 0
all_data = []
for file in files:
data = load_document(file)
all_data.extend(data)
total_chunks += len(data)
if os.path.exists("faiss_database"):
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def clear_cache():
if os.path.exists("faiss_database"):
os.remove("faiss_database")
return "Cache cleared successfully."
else:
return "No cache to clear."
def extract_text_from_webpage(html):
soup = BeautifulSoup(html, 'html.parser')
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
return text
_useragent_list = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
escaped_term = urllib.parse.quote_plus(term)
start = 0
all_results = []
max_chars_per_page = 8000
with requests.Session() as session:
while start < num_results:
try:
user_agent = random.choice(_useragent_list)
headers = {
'User-Agent': user_agent
}
resp = session.get(
url="https://www.google.com/search",
headers=headers,
params={
"q": term,
"num": num_results - start,
"hl": lang,
"start": start,
"safe": safe,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"Error retrieving search results: {e}")
break
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
if not result_block:
break
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
try:
webpage = session.get(link, headers=headers, timeout=timeout)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page] + "..."
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException as e:
print(f"Error retrieving webpage content: {e}")
all_results.append({"link": link, "text": None})
else:
all_results.append({"link": None, "text": None})
start += len(result_block)
if not all_results:
return [{"link": None, "text": "No information found in the web search results."}]
return all_results
def duckduckgo_search(query, max_results=5):
try:
results = ddg(query, region='wt-wt', safesearch='Moderate', time=None, max_results=max_results)
formatted_results = []
for result in results:
formatted_results.append({
"link": result.get('href', ''),
"text": result.get('title', '') + '. ' + result.get('body', '')
})
return formatted_results
except Exception as e:
print(f"Error in DuckDuckGo search: {e}")
return [{"link": None, "text": "No information found in the web search results."}]
def respond(
message,
history: list[tuple[str, str]],
temperature,
top_p,
repetition_penalty,
max_tokens,
search_engine
):
model = get_model(temperature, top_p, repetition_penalty)
# Perform web search
if search_engine == "Google":
search_results = google_search(message)
else:
search_results = duckduckgo_search(message)
# Check if we have a FAISS database
if os.path.exists("faiss_database"):
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
retriever = database.as_retriever()
relevant_docs = retriever.get_relevant_documents(message)
context_str = "\n".join([doc.page_content for doc in relevant_docs])
# Use the context in the prompt
prompt_template = f"""
Answer the question based on the following context and web search results:
Context from documents:
{context_str}
Web Search Results:
{{search_results}}
Question: {{message}}
If the context and web search results don't contain relevant information, state that the information is not available.
Provide a concise and direct answer to the question.
"""
else:
prompt_template = """
Answer the question based on the following web search results:
Web Search Results:
{search_results}
Question: {message}
If the web search results don't contain relevant information, state that the information is not available.
Provide a concise and direct answer to the question.
"""
prompt = PromptTemplate(
input_variables=["search_results", "message"],
template=prompt_template
)
chain = LLMChain(llm=model, prompt=prompt)
search_results_text = "\n".join([f"- {result['text']}" for result in search_results if result['text']])
response = chain.run(search_results=search_results_text, message=message)
# Add sources
sources = set(result["link"] for result in search_results if result["link"])
sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources)
response += sources_section
return response
# Gradio interface
demo = gr.Blocks()
with demo:
gr.Markdown("# Chat with your PDF documents and Web Search")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
update_button = gr.Button("Upload PDF")
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input], outputs=update_output)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversation")
message_input = gr.Textbox(label="Enter your message")
submit_button = gr.Button("Submit")
with gr.Column(scale=1):
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
max_tokens = gr.Slider(minimum=1, maximum=1000, value=500, step=1, label="Max tokens")
search_engine = gr.Dropdown(["DuckDuckGo", "Google"], value="DuckDuckGo", label="Search Engine")
submit_button.click(
respond,
inputs=[
message_input,
chatbot,
temperature,
top_p,
repetition_penalty,
max_tokens,
search_engine
],
outputs=chatbot
)
clear_button = gr.Button("Clear Cache")
clear_output = gr.Textbox(label="Cache Status")
clear_button.click(clear_cache, inputs=[], outputs=clear_output)
if __name__ == "__main__":
demo.launch() |