Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,8 +2,7 @@ import os
|
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
-
import
|
| 6 |
-
from typing import List
|
| 7 |
|
| 8 |
from langchain_core.prompts import ChatPromptTemplate
|
| 9 |
from langchain_community.vectorstores import FAISS
|
|
@@ -11,31 +10,25 @@ from langchain_community.document_loaders import PyPDFLoader
|
|
| 11 |
from langchain_core.output_parsers import StrOutputParser
|
| 12 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 13 |
from langchain_community.llms import HuggingFaceHub
|
| 14 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 15 |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
| 16 |
-
from langchain_core.documents import Document
|
| 17 |
|
| 18 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
| 19 |
|
| 20 |
-
def load_and_split_document(file
|
| 21 |
-
"""Loads and splits the document into
|
| 22 |
loader = PyPDFLoader(file.name)
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 26 |
-
chunk_size=1000,
|
| 27 |
-
chunk_overlap=200,
|
| 28 |
-
length_function=len,
|
| 29 |
-
)
|
| 30 |
-
|
| 31 |
-
chunks = text_splitter.split_documents(pages)
|
| 32 |
-
return chunks
|
| 33 |
|
| 34 |
def get_embeddings():
|
| 35 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 36 |
|
| 37 |
-
def
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
db.save_local("faiss_database")
|
| 40 |
|
| 41 |
prompt = """
|
|
@@ -74,13 +67,19 @@ def response(database, model, question):
|
|
| 74 |
ans = generate_chunked_response(model, formatted_prompt)
|
| 75 |
return ans
|
| 76 |
|
| 77 |
-
def update_vectors(
|
| 78 |
-
if
|
| 79 |
-
return "Please upload
|
| 80 |
-
|
| 81 |
embed = get_embeddings()
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
def ask_question(question):
|
| 86 |
if not question:
|
|
@@ -98,7 +97,7 @@ def extract_db_to_excel():
|
|
| 98 |
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents]
|
| 99 |
df = pd.DataFrame(data)
|
| 100 |
|
| 101 |
-
with
|
| 102 |
excel_path = tmp.name
|
| 103 |
df.to_excel(excel_path, index=False)
|
| 104 |
|
|
@@ -109,7 +108,7 @@ with gr.Blocks() as demo:
|
|
| 109 |
gr.Markdown("# Chat with your PDF documents")
|
| 110 |
|
| 111 |
with gr.Row():
|
| 112 |
-
file_input = gr.File(label="Upload your PDF
|
| 113 |
update_button = gr.Button("Update Vector Store")
|
| 114 |
|
| 115 |
update_output = gr.Textbox(label="Update Status")
|
|
|
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
+
from tempfile import NamedTemporaryFile
|
|
|
|
| 6 |
|
| 7 |
from langchain_core.prompts import ChatPromptTemplate
|
| 8 |
from langchain_community.vectorstores import FAISS
|
|
|
|
| 10 |
from langchain_core.output_parsers import StrOutputParser
|
| 11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 12 |
from langchain_community.llms import HuggingFaceHub
|
|
|
|
| 13 |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
|
|
|
| 14 |
|
| 15 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
| 16 |
|
| 17 |
+
def load_and_split_document(file):
|
| 18 |
+
"""Loads and splits the document into pages."""
|
| 19 |
loader = PyPDFLoader(file.name)
|
| 20 |
+
data = loader.load_and_split()
|
| 21 |
+
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
def get_embeddings():
|
| 24 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 25 |
|
| 26 |
+
def create_or_update_database(data, embeddings):
|
| 27 |
+
if os.path.exists("faiss_database"):
|
| 28 |
+
db = FAISS.load_local("faiss_database", embeddings)
|
| 29 |
+
db.add_documents(data)
|
| 30 |
+
else:
|
| 31 |
+
db = FAISS.from_documents(data, embeddings)
|
| 32 |
db.save_local("faiss_database")
|
| 33 |
|
| 34 |
prompt = """
|
|
|
|
| 67 |
ans = generate_chunked_response(model, formatted_prompt)
|
| 68 |
return ans
|
| 69 |
|
| 70 |
+
def update_vectors(files):
|
| 71 |
+
if not files:
|
| 72 |
+
return "Please upload at least one PDF file."
|
| 73 |
+
|
| 74 |
embed = get_embeddings()
|
| 75 |
+
total_chunks = 0
|
| 76 |
+
|
| 77 |
+
for file in files:
|
| 78 |
+
data = load_and_split_document(file)
|
| 79 |
+
create_or_update_database(data, embed)
|
| 80 |
+
total_chunks += len(data)
|
| 81 |
+
|
| 82 |
+
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
|
| 83 |
|
| 84 |
def ask_question(question):
|
| 85 |
if not question:
|
|
|
|
| 97 |
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents]
|
| 98 |
df = pd.DataFrame(data)
|
| 99 |
|
| 100 |
+
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
|
| 101 |
excel_path = tmp.name
|
| 102 |
df.to_excel(excel_path, index=False)
|
| 103 |
|
|
|
|
| 108 |
gr.Markdown("# Chat with your PDF documents")
|
| 109 |
|
| 110 |
with gr.Row():
|
| 111 |
+
file_input = gr.File(label="Upload your PDF documents", file_types=[".pdf"], multiple=True)
|
| 112 |
update_button = gr.Button("Update Vector Store")
|
| 113 |
|
| 114 |
update_output = gr.Textbox(label="Update Status")
|