Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,7 @@ import os
|
|
2 |
import json
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
-
import
|
6 |
-
from typing import List
|
7 |
|
8 |
from langchain_core.prompts import ChatPromptTemplate
|
9 |
from langchain_community.vectorstores import FAISS
|
@@ -11,31 +10,25 @@ from langchain_community.document_loaders import PyPDFLoader
|
|
11 |
from langchain_core.output_parsers import StrOutputParser
|
12 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
13 |
from langchain_community.llms import HuggingFaceHub
|
14 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
15 |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
16 |
-
from langchain_core.documents import Document
|
17 |
|
18 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
19 |
|
20 |
-
def load_and_split_document(file
|
21 |
-
"""Loads and splits the document into
|
22 |
loader = PyPDFLoader(file.name)
|
23 |
-
|
24 |
-
|
25 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
26 |
-
chunk_size=1000,
|
27 |
-
chunk_overlap=200,
|
28 |
-
length_function=len,
|
29 |
-
)
|
30 |
-
|
31 |
-
chunks = text_splitter.split_documents(pages)
|
32 |
-
return chunks
|
33 |
|
34 |
def get_embeddings():
|
35 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
36 |
|
37 |
-
def
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
db.save_local("faiss_database")
|
40 |
|
41 |
prompt = """
|
@@ -74,13 +67,19 @@ def response(database, model, question):
|
|
74 |
ans = generate_chunked_response(model, formatted_prompt)
|
75 |
return ans
|
76 |
|
77 |
-
def update_vectors(
|
78 |
-
if
|
79 |
-
return "Please upload
|
80 |
-
|
81 |
embed = get_embeddings()
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
def ask_question(question):
|
86 |
if not question:
|
@@ -98,7 +97,7 @@ def extract_db_to_excel():
|
|
98 |
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents]
|
99 |
df = pd.DataFrame(data)
|
100 |
|
101 |
-
with
|
102 |
excel_path = tmp.name
|
103 |
df.to_excel(excel_path, index=False)
|
104 |
|
@@ -109,7 +108,7 @@ with gr.Blocks() as demo:
|
|
109 |
gr.Markdown("# Chat with your PDF documents")
|
110 |
|
111 |
with gr.Row():
|
112 |
-
file_input = gr.File(label="Upload your PDF
|
113 |
update_button = gr.Button("Update Vector Store")
|
114 |
|
115 |
update_output = gr.Textbox(label="Update Status")
|
|
|
2 |
import json
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
+
from tempfile import NamedTemporaryFile
|
|
|
6 |
|
7 |
from langchain_core.prompts import ChatPromptTemplate
|
8 |
from langchain_community.vectorstores import FAISS
|
|
|
10 |
from langchain_core.output_parsers import StrOutputParser
|
11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
from langchain_community.llms import HuggingFaceHub
|
|
|
13 |
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
|
|
14 |
|
15 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
16 |
|
17 |
+
def load_and_split_document(file):
|
18 |
+
"""Loads and splits the document into pages."""
|
19 |
loader = PyPDFLoader(file.name)
|
20 |
+
data = loader.load_and_split()
|
21 |
+
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def get_embeddings():
|
24 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
25 |
|
26 |
+
def create_or_update_database(data, embeddings):
|
27 |
+
if os.path.exists("faiss_database"):
|
28 |
+
db = FAISS.load_local("faiss_database", embeddings)
|
29 |
+
db.add_documents(data)
|
30 |
+
else:
|
31 |
+
db = FAISS.from_documents(data, embeddings)
|
32 |
db.save_local("faiss_database")
|
33 |
|
34 |
prompt = """
|
|
|
67 |
ans = generate_chunked_response(model, formatted_prompt)
|
68 |
return ans
|
69 |
|
70 |
+
def update_vectors(files):
|
71 |
+
if not files:
|
72 |
+
return "Please upload at least one PDF file."
|
73 |
+
|
74 |
embed = get_embeddings()
|
75 |
+
total_chunks = 0
|
76 |
+
|
77 |
+
for file in files:
|
78 |
+
data = load_and_split_document(file)
|
79 |
+
create_or_update_database(data, embed)
|
80 |
+
total_chunks += len(data)
|
81 |
+
|
82 |
+
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
|
83 |
|
84 |
def ask_question(question):
|
85 |
if not question:
|
|
|
97 |
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents]
|
98 |
df = pd.DataFrame(data)
|
99 |
|
100 |
+
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
|
101 |
excel_path = tmp.name
|
102 |
df.to_excel(excel_path, index=False)
|
103 |
|
|
|
108 |
gr.Markdown("# Chat with your PDF documents")
|
109 |
|
110 |
with gr.Row():
|
111 |
+
file_input = gr.File(label="Upload your PDF documents", file_types=[".pdf"], multiple=True)
|
112 |
update_button = gr.Button("Update Vector Store")
|
113 |
|
114 |
update_output = gr.Textbox(label="Update Status")
|