Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -352,55 +352,126 @@ def estimate_tokens(text):
|
|
| 352 |
# Rough estimate: 1 token ~= 4 characters
|
| 353 |
return len(text) // 4
|
| 354 |
|
| 355 |
-
def ask_question(question
|
|
|
|
|
|
|
|
|
|
| 356 |
model = get_model(temperature, top_p, repetition_penalty)
|
|
|
|
|
|
|
| 357 |
chatbot.model = model
|
| 358 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
if web_search:
|
| 360 |
contextualized_question, topics, entity_tracker, instructions = chatbot.process_question(question)
|
| 361 |
|
| 362 |
-
# Log the contextualized question for debugging
|
| 363 |
print(f"Contextualized question: {contextualized_question}")
|
|
|
|
| 364 |
|
| 365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
break
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
answer
|
| 400 |
-
|
| 401 |
# Update chatbot context with the answer
|
| 402 |
chatbot.add_to_history(answer)
|
| 403 |
-
|
| 404 |
return answer
|
| 405 |
|
| 406 |
else: # PDF document chat
|
|
|
|
| 352 |
# Rough estimate: 1 token ~= 4 characters
|
| 353 |
return len(text) // 4
|
| 354 |
|
| 355 |
+
def ask_question(question, temperature, top_p, repetition_penalty, web_search, chatbot):
|
| 356 |
+
if not question:
|
| 357 |
+
return "Please enter a question."
|
| 358 |
+
|
| 359 |
model = get_model(temperature, top_p, repetition_penalty)
|
| 360 |
+
|
| 361 |
+
# Update the chatbot's model
|
| 362 |
chatbot.model = model
|
| 363 |
|
| 364 |
+
embed = get_embeddings()
|
| 365 |
+
|
| 366 |
+
if os.path.exists("faiss_database"):
|
| 367 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 368 |
+
else:
|
| 369 |
+
database = None
|
| 370 |
+
|
| 371 |
+
max_attempts = 3 # Define the maximum number of attempts
|
| 372 |
+
context_reduction_factor = 0.7
|
| 373 |
+
max_tokens = 32000 # Maximum tokens allowed by the model
|
| 374 |
+
|
| 375 |
if web_search:
|
| 376 |
contextualized_question, topics, entity_tracker, instructions = chatbot.process_question(question)
|
| 377 |
|
| 378 |
+
# Log the contextualized question and instructions separately for debugging
|
| 379 |
print(f"Contextualized question: {contextualized_question}")
|
| 380 |
+
print(f"Instructions: {instructions}")
|
| 381 |
|
| 382 |
+
try:
|
| 383 |
+
search_results = google_search(contextualized_question, num_results=3)
|
| 384 |
+
except Exception as e:
|
| 385 |
+
print(f"Error in web search: {e}")
|
| 386 |
+
return f"I apologize, but I encountered an error while searching for information: {str(e)}"
|
| 387 |
|
| 388 |
+
all_answers = []
|
| 389 |
+
|
| 390 |
+
for attempt in range(max_attempts):
|
| 391 |
+
try:
|
| 392 |
+
web_docs = [Document(page_content=result["text"], metadata={"source": result["link"]}) for result in search_results if result["text"]]
|
| 393 |
+
|
| 394 |
+
if not web_docs:
|
| 395 |
+
return "I'm sorry, but I couldn't find any relevant information from the web search."
|
| 396 |
+
|
| 397 |
+
if database is None:
|
| 398 |
+
database = FAISS.from_documents(web_docs, embed)
|
| 399 |
+
else:
|
| 400 |
+
database.add_documents(web_docs)
|
| 401 |
+
|
| 402 |
+
database.save_local("faiss_database")
|
| 403 |
+
|
| 404 |
+
context_str = "\n".join([f"Source: {doc.metadata['source']}\nContent: {doc.page_content}" for doc in web_docs])
|
| 405 |
+
|
| 406 |
+
instruction_prompt = f"User Instructions: {instructions}\n" if instructions else ""
|
| 407 |
+
|
| 408 |
+
prompt_template = f"""
|
| 409 |
+
Answer the question based on the following web search results, conversation context, entity information, and user instructions:
|
| 410 |
+
Web Search Results:
|
| 411 |
+
{{context}}
|
| 412 |
+
Conversation Context: {{conv_context}}
|
| 413 |
+
Current Question: {{question}}
|
| 414 |
+
Topics: {{topics}}
|
| 415 |
+
Entity Information: {{entities}}
|
| 416 |
+
{instruction_prompt}
|
| 417 |
+
Provide a concise and relevant answer to the question.
|
| 418 |
+
"""
|
| 419 |
+
|
| 420 |
+
prompt_val = ChatPromptTemplate.from_template(prompt_template)
|
| 421 |
+
|
| 422 |
+
# Start with full context and progressively reduce if necessary
|
| 423 |
+
current_context = context_str
|
| 424 |
+
current_conv_context = chatbot.get_context()
|
| 425 |
+
current_topics = topics
|
| 426 |
+
current_entities = {k: list(v) for k, v in entity_tracker.items()}
|
| 427 |
+
|
| 428 |
+
while True:
|
| 429 |
+
formatted_prompt = prompt_val.format(
|
| 430 |
+
context=current_context,
|
| 431 |
+
conv_context=current_conv_context,
|
| 432 |
+
question=question,
|
| 433 |
+
topics=", ".join(current_topics),
|
| 434 |
+
entities=json.dumps(current_entities)
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
# Estimate token count (rough estimate)
|
| 438 |
+
estimated_tokens = len(formatted_prompt) // 4
|
| 439 |
+
|
| 440 |
+
if estimated_tokens <= max_tokens - 1000: # Leave 1000 tokens for the model's response
|
| 441 |
+
break
|
| 442 |
+
|
| 443 |
+
# Reduce context if estimated token count is too high
|
| 444 |
+
current_context = current_context[:int(len(current_context) * context_reduction_factor)]
|
| 445 |
+
current_conv_context = current_conv_context[:int(len(current_conv_context) * context_reduction_factor)]
|
| 446 |
+
current_topics = current_topics[:max(1, int(len(current_topics) * context_reduction_factor))]
|
| 447 |
+
current_entities = {k: v[:max(1, int(len(v) * context_reduction_factor))] for k, v in current_entities.items()}
|
| 448 |
+
|
| 449 |
+
if len(current_context) + len(current_conv_context) + len(str(current_topics)) + len(str(current_entities)) < 100:
|
| 450 |
+
raise ValueError("Context reduced too much. Unable to process the query.")
|
| 451 |
+
|
| 452 |
+
full_response = generate_chunked_response(model, formatted_prompt, max_tokens=1000)
|
| 453 |
+
answer = extract_answer(full_response, instructions)
|
| 454 |
+
all_answers.append(answer)
|
| 455 |
break
|
| 456 |
+
|
| 457 |
+
except ValueError as ve:
|
| 458 |
+
print(f"Error in ask_question (attempt {attempt + 1}): {ve}")
|
| 459 |
+
if attempt == max_attempts - 1:
|
| 460 |
+
all_answers.append(f"I apologize, but I'm having trouble processing the query due to its length or complexity. Could you please try asking a more specific or shorter question?")
|
| 461 |
+
|
| 462 |
+
except Exception as e:
|
| 463 |
+
print(f"Error in ask_question (attempt {attempt + 1}): {e}")
|
| 464 |
+
if attempt == max_attempts - 1:
|
| 465 |
+
all_answers.append(f"I apologize, but an unexpected error occurred. Please try again with a different question or check your internet connection.")
|
| 466 |
+
|
| 467 |
+
answer = "\n\n".join(all_answers)
|
| 468 |
+
sources = set(doc.metadata['source'] for doc in web_docs)
|
| 469 |
+
sources_section = "\n\nSources:\n" + "\n".join(f"- {source}" for source in sources)
|
| 470 |
+
answer += sources_section
|
| 471 |
+
|
| 472 |
# Update chatbot context with the answer
|
| 473 |
chatbot.add_to_history(answer)
|
| 474 |
+
|
| 475 |
return answer
|
| 476 |
|
| 477 |
else: # PDF document chat
|