Spaces:
Running
Running
File size: 21,827 Bytes
9fcd7e5 97c6d6a 5871ec6 97c6d6a 328bc48 97c6d6a caecf96 c8169e3 cf0758a 97c6d6a e6e13d7 209fdb1 e6e13d7 97c6d6a 487fdcd 5a02e5f caecf96 97c6d6a 9fcd7e5 97c6d6a 9acbbf9 ce5bb9f 97c6d6a ce5bb9f 00cacd9 97c6d6a fde3f64 97c6d6a ce5bb9f 97c6d6a ce5bb9f 97c6d6a c8302a1 ce5bb9f 97c6d6a ce5bb9f 97c6d6a bfc063e 8ed4a95 97c6d6a ca9bb83 774efea 922ee31 cf0758a 774efea a71bb6a 774efea a71bb6a 774efea cf0758a 774efea cf0758a 922ee31 2014e26 922ee31 b2aeef2 28413b4 922ee31 abefda5 922ee31 cf0758a 922ee31 abefda5 28413b4 e6e13d7 abefda5 b2aeef2 abefda5 28413b4 ecb9aad 9acbbf9 ce5bb9f 97c6d6a ce5bb9f 97c6d6a ce5bb9f 5a02e5f 97c6d6a ce5bb9f 97c6d6a ce5bb9f 9acbbf9 ecb9aad 9acbbf9 ce5bb9f 9acbbf9 eed06df ce5bb9f eed06df ecb9aad 9acbbf9 ce5bb9f 97c6d6a c7e4b70 ce5bb9f ecb9aad 774efea ecb9aad c7e4b70 ce5bb9f ecb9aad fdf4790 c7e4b70 ecb9aad c7e4b70 ce5bb9f c7e4b70 ecb9aad cb9f424 ecb9aad cb9f424 ecb9aad cb9f424 ecb9aad cb9f424 ecb9aad 487fdcd cb9f424 ca9bb83 cb9f424 ecb9aad cb9f424 806791d ecb9aad cb9f424 ecb9aad cb9f424 ecb9aad cb9f424 ecb9aad cb9f424 ecb9aad cb9f424 ecb9aad 806791d ca9bb83 d1cc2bb fde3f64 9acbbf9 fde3f64 9acbbf9 ecb9aad 9acbbf9 ecb9aad e2e8b23 ca9bb83 f7e2f6f 00cacd9 ecb9aad cb9f424 ca9bb83 ecb9aad 5a02e5f 1289a5c 7038b6e ca9bb83 97c6d6a ca9bb83 97c6d6a ecb9aad 97c6d6a 8ed4a95 ecb9aad 806791d fde3f64 97c6d6a d1cc2bb ecb9aad 97c6d6a ca9bb83 97c6d6a abefda5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import inspect
import logging
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"
print(f"ACCOUNT_ID: {ACCOUNT_ID}")
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"@cf/meta/llama-3.1-8b-instruct"
]
# Initialize LlamaParse
llama_parser = LlamaParse(
api_key=llama_cloud_api_key,
result_type="markdown",
num_workers=4,
verbose=True,
language="en",
)
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
"""Loads and splits the document into pages."""
if parser == "pypdf":
loader = PyPDFLoader(file.name)
return loader.load_and_split()
elif parser == "llamaparse":
try:
documents = llama_parser.load_data(file.name)
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
except Exception as e:
print(f"Error using Llama Parse: {str(e)}")
print("Falling back to PyPDF parser")
loader = PyPDFLoader(file.name)
return loader.load_and_split()
else:
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def update_vectors(files, parser):
global uploaded_documents
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
if not files:
logging.warning("No files provided for update_vectors")
return "Please upload at least one PDF file.", gr.CheckboxGroup(
choices=[doc["name"] for doc in uploaded_documents],
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
label="Select documents to query"
)
embed = get_embeddings()
total_chunks = 0
all_data = []
for file in files:
logging.info(f"Processing file: {file.name}")
try:
data = load_document(file, parser)
logging.info(f"Loaded {len(data)} chunks from {file.name}")
all_data.extend(data)
total_chunks += len(data)
if not any(doc["name"] == file.name for doc in uploaded_documents):
uploaded_documents.append({"name": file.name, "selected": True})
logging.info(f"Added new document to uploaded_documents: {file.name}")
else:
logging.info(f"Document already exists in uploaded_documents: {file.name}")
except Exception as e:
logging.error(f"Error processing file {file.name}: {str(e)}")
logging.info(f"Total chunks processed: {total_chunks}")
if os.path.exists("faiss_database"):
logging.info("Updating existing FAISS database")
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
database.add_documents(all_data)
else:
logging.info("Creating new FAISS database")
database = FAISS.from_documents(all_data, embed)
database.save_local("faiss_database")
logging.info("FAISS database saved")
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
choices=[doc["name"] for doc in uploaded_documents],
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
label="Select documents to query"
)
def duckduckgo_search(query):
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
return results
class CitingSources(BaseModel):
sources: List[str] = Field(
...,
description="List of sources to cite. Should be an URL of the source."
)
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
headers = {
"Authorization": f"Bearer {API_TOKEN}",
"Content-Type": "application/json"
}
model = "@cf/meta/llama-3.1-8b-instruct"
if search_type == "pdf":
instruction = f"""Using the following context from the PDF documents:
{context}
Write a detailed and complete response that answers the following user question: '{query}'"""
else: # web search
instruction = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""
inputs = [
{"role": "system", "content": instruction},
{"role": "user", "content": query}
]
payload = {
"messages": inputs,
"stream": True,
"temperature": temperature
}
full_response = ""
for i in range(num_calls):
try:
with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
if response.status_code == 200:
for line in response.iter_lines():
if line:
try:
json_response = json.loads(line.decode('utf-8').split('data: ')[1])
if 'response' in json_response:
chunk = json_response['response']
full_response += chunk
yield full_response
except (json.JSONDecodeError, IndexError) as e:
logging.error(f"Error parsing streaming response: {str(e)}")
continue
else:
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
except Exception as e:
logging.error(f"Error in generating response from Cloudflare: {str(e)}")
yield f"I apologize, but an error occurred: {str(e)}. Please try again later."
if not full_response:
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
search_results = duckduckgo_search(query)
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
for result in search_results if 'body' in result)
prompt = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""
if model == "@cf/meta/llama-3.1-8b-instruct":
# Use Cloudflare API
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
yield response, "" # Yield streaming response without sources
else:
# Use Hugging Face API
client = InferenceClient(model, token=huggingface_token)
main_content = ""
for i in range(num_calls):
for message in client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=1000,
temperature=temperature,
stream=True,
):
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
chunk = message.choices[0].delta.content
main_content += chunk
yield main_content, "" # Yield partial main content without sources
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
embed = get_embeddings()
if os.path.exists("faiss_database"):
logging.info("Loading FAISS database")
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
else:
logging.warning("No FAISS database found")
yield "No documents available. Please upload PDF documents to answer questions."
return
retriever = database.as_retriever()
logging.info(f"Retrieving relevant documents for query: {query}")
relevant_docs = retriever.get_relevant_documents(query)
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
# Filter relevant_docs based on selected documents
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
if not filtered_docs:
logging.warning(f"No relevant information found in the selected documents: {selected_docs}")
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
return
for doc in filtered_docs:
logging.info(f"Document source: {doc.metadata['source']}")
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
context_str = "\n".join([doc.page_content for doc in filtered_docs])
logging.info(f"Total context length: {len(context_str)}")
if model == "@cf/meta/llama-3.1-8b-instruct":
logging.info("Using Cloudflare API")
# Use Cloudflare API with the retrieved context
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
yield response
else:
logging.info("Using Hugging Face API")
# Use Hugging Face API
prompt = f"""Using the following context from the PDF documents:
{context_str}
Write a detailed and complete response that answers the following user question: '{query}'"""
client = InferenceClient(model, token=huggingface_token)
response = ""
for i in range(num_calls):
logging.info(f"API call {i+1}/{num_calls}")
for message in client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=1000,
temperature=temperature,
stream=True,
):
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
chunk = message.choices[0].delta.content
response += chunk
yield response # Yield partial response
logging.info("Finished generating response")
def continue_response(last_response, context, query, model, temperature):
prompt = f"""Using the following context and partial response:
Context:
{context}
Partial Response:
{last_response}
Continue the response to fully answer the query: '{query}'
Make sure the continuation flows smoothly from the previous part."""
if model == "@cf/meta/llama-3.1-8b-instruct":
return get_response_from_cloudflare(prompt="", context=context, query=prompt, num_calls=1, temperature=temperature, search_type="pdf")
else:
client = InferenceClient(model, token=huggingface_token)
for message in client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=1000,
temperature=temperature,
stream=True,
):
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
yield message.choices[0].delta.content
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls, selected_docs):
if not message.strip():
return "", history
history = history + [(message, "")]
try:
last_response = ""
for response in respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
last_response = response
history[-1] = (message, response)
yield history
# Check if the response seems truncated
if not last_response.strip().endswith((".", "!", "?")):
history.append((None, "Response may be incomplete. Type 'continue' to generate more."))
yield history
except gr.CancelledError:
yield history
except Exception as e:
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
yield history
def continue_generation(history, use_web_search, model, temperature, selected_docs):
if not history:
return history, gr.Button.update(visible=False)
last_message = history[-1][0]
last_response = history[-1][1]
if use_web_search:
search_results = duckduckgo_search(last_message)
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
for result in search_results if 'body' in result)
else:
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
retriever = database.as_retriever()
relevant_docs = retriever.get_relevant_documents(last_message)
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
context = "\n".join([doc.page_content for doc in filtered_docs])
continuation = ""
for chunk in continue_response(last_response, context, last_message, model, temperature):
continuation += chunk
history[-1] = (last_message, last_response + continuation)
yield history, gr.Button.update(visible=True)
if not (last_response + continuation).strip().endswith((".", "!", "?")):
yield history, gr.Button.update(visible=True, text="Continue Generation")
else:
yield history, gr.Button.update(visible=False)
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
logging.info(f"Selected Documents: {selected_docs}")
# Check if the user wants to continue the previous response
if message.strip().lower() == "continue" and history:
last_message = history[-2][0] # Get the last user message
last_response = history[-2][1] # Get the last bot response
context = get_context(last_message, use_web_search, selected_docs)
for continuation in continue_response(last_response, context, last_message, model, temperature):
yield last_response + continuation
else:
try:
if use_web_search:
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
response = f"{main_content}\n\n{sources}"
first_line = response.split('\n')[0] if response else ''
logging.info(f"Generated Response (first line): {first_line}")
yield response
else:
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
first_line = partial_response.split('\n')[0] if partial_response else ''
logging.info(f"Generated Response (first line): {first_line}")
yield partial_response
except Exception as e:
logging.error(f"Error with {model}: {str(e)}")
if "microsoft/Phi-3-mini-4k-instruct" in model:
logging.info("Falling back to Mistral model due to Phi-3 error")
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
else:
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
def get_context(message, use_web_search, selected_docs):
if use_web_search:
search_results = duckduckgo_search(message)
return "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
for result in search_results if 'body' in result)
else:
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
retriever = database.as_retriever()
relevant_docs = retriever.get_relevant_documents(message)
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
return "\n".join([doc.page_content for doc in filtered_docs])
def vote(data: gr.LikeData):
if data.liked:
print(f"You upvoted this response: {data.value}")
else:
print(f"You downvoted this response: {data.value}")
css = """
/* Add your custom CSS here */
"""
uploaded_documents = []
def display_documents():
return gr.CheckboxGroup(
choices=[doc["name"] for doc in uploaded_documents],
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
label="Select documents to query"
)
# Define the checkbox outside the demo block
document_selector = gr.CheckboxGroup(label="Select documents to query")
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
demo = gr.ChatInterface(
chatbot_interface,
additional_inputs=[
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
use_web_search,
document_selector # Add the document selector to the chat interface
],
title="AI-powered Web Search and PDF Chat Assistant",
description="Chat with your PDFs or use web search to answer questions. Type 'continue' to generate more if a response seems incomplete.",
theme=gr.themes.Soft(
primary_hue="orange",
secondary_hue="amber",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
).set(
body_background_fill_dark="#0c0505",
block_background_fill_dark="#0c0505",
block_border_width="1px",
block_title_background_fill_dark="#1b0f0f",
input_background_fill_dark="#140b0b",
button_secondary_background_fill_dark="#140b0b",
border_color_accent_dark="#1b0f0f",
border_color_primary_dark="#1b0f0f",
background_fill_secondary_dark="#0c0505",
color_accent_soft_dark="transparent",
code_background_fill_dark="#140b0b"
),
css=css,
examples=[
["Tell me about the contents of the uploaded PDFs."],
["What are the main topics discussed in the documents?"],
["Can you summarize the key points from the PDFs?"]
],
cache_examples=False,
analytics_enabled=False,
)
# Add file upload functionality
with demo:
gr.Markdown("## Upload PDF Documents")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
update_button = gr.Button("Upload Document")
update_output = gr.Textbox(label="Update Status")
# Update both the output text and the document selector
update_button.click(update_vectors,
inputs=[file_input, parser_dropdown],
outputs=[update_output, document_selector])
gr.Markdown(
"""
## How to use
1. Upload PDF documents using the file input at the top.
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
3. Select the documents you want to query using the checkboxes.
4. Ask questions in the chat interface.
5. Toggle "Use Web Search" to switch between PDF chat and web search.
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
7. Use the provided examples or ask your own questions.
8. If a response seems incomplete, type 'continue' to generate more.
"""
)
if __name__ == "__main__":
demo.launch(share=True) |