File size: 21,827 Bytes
9fcd7e5
97c6d6a
 
5871ec6
97c6d6a
 
 
 
 
 
 
 
 
 
 
 
328bc48
 
 
 
97c6d6a
 
 
 
caecf96
c8169e3
cf0758a
97c6d6a
e6e13d7
209fdb1
e6e13d7
97c6d6a
487fdcd
5a02e5f
caecf96
97c6d6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fcd7e5
97c6d6a
9acbbf9
ce5bb9f
 
97c6d6a
ce5bb9f
00cacd9
 
 
 
 
97c6d6a
 
 
 
fde3f64
97c6d6a
ce5bb9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97c6d6a
 
ce5bb9f
97c6d6a
 
c8302a1
ce5bb9f
97c6d6a
 
 
ce5bb9f
97c6d6a
bfc063e
8ed4a95
 
 
 
97c6d6a
 
 
 
 
 
 
 
 
 
 
ca9bb83
774efea
922ee31
 
 
 
cf0758a
 
774efea
a71bb6a
774efea
a71bb6a
774efea
 
 
 
 
 
cf0758a
774efea
 
cf0758a
 
922ee31
 
2014e26
 
922ee31
 
b2aeef2
28413b4
 
922ee31
 
 
 
 
 
 
 
 
abefda5
922ee31
 
 
cf0758a
922ee31
abefda5
28413b4
e6e13d7
abefda5
b2aeef2
 
abefda5
28413b4
ecb9aad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9acbbf9
ce5bb9f
 
97c6d6a
 
ce5bb9f
97c6d6a
 
ce5bb9f
5a02e5f
 
97c6d6a
 
ce5bb9f
97c6d6a
ce5bb9f
9acbbf9
ecb9aad
9acbbf9
ce5bb9f
9acbbf9
eed06df
ce5bb9f
eed06df
 
 
ecb9aad
 
 
 
9acbbf9
ce5bb9f
97c6d6a
c7e4b70
ce5bb9f
ecb9aad
774efea
ecb9aad
c7e4b70
ce5bb9f
ecb9aad
fdf4790
 
 
 
c7e4b70
 
ecb9aad
c7e4b70
ce5bb9f
c7e4b70
 
 
 
 
 
 
 
ecb9aad
 
 
 
cb9f424
ecb9aad
 
 
 
cb9f424
 
ecb9aad
 
 
 
 
cb9f424
 
ecb9aad
cb9f424
 
ecb9aad
 
 
 
 
 
 
 
487fdcd
cb9f424
 
 
 
 
ca9bb83
cb9f424
ecb9aad
 
 
 
 
 
 
 
 
 
cb9f424
 
 
 
 
 
 
 
806791d
ecb9aad
cb9f424
ecb9aad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb9f424
ecb9aad
 
 
 
 
cb9f424
ecb9aad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb9f424
ecb9aad
 
 
 
 
 
 
 
 
 
 
 
cb9f424
ecb9aad
 
 
 
 
 
806791d
ca9bb83
 
 
 
d1cc2bb
 
fde3f64
9acbbf9
fde3f64
 
9acbbf9
 
 
ecb9aad
9acbbf9
ecb9aad
e2e8b23
 
ca9bb83
f7e2f6f
00cacd9
 
 
 
 
ecb9aad
cb9f424
ca9bb83
ecb9aad
5a02e5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289a5c
 
 
 
7038b6e
ca9bb83
 
 
 
97c6d6a
ca9bb83
 
 
97c6d6a
 
 
ecb9aad
97c6d6a
 
8ed4a95
 
ecb9aad
 
 
806791d
fde3f64
97c6d6a
 
 
 
d1cc2bb
 
 
 
ecb9aad
 
97c6d6a
 
ca9bb83
97c6d6a
abefda5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from tempfile import NamedTemporaryFile
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_parse import LlamaParse
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import inspect
import logging

# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"

print(f"ACCOUNT_ID: {ACCOUNT_ID}")
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")

MODELS = [
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "@cf/meta/llama-3.1-8b-instruct"
]

# Initialize LlamaParse
llama_parser = LlamaParse(
    api_key=llama_cloud_api_key,
    result_type="markdown",
    num_workers=4,
    verbose=True,
    language="en",
)

def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]:
    """Loads and splits the document into pages."""
    if parser == "pypdf":
        loader = PyPDFLoader(file.name)
        return loader.load_and_split()
    elif parser == "llamaparse":
        try:
            documents = llama_parser.load_data(file.name)
            return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents]
        except Exception as e:
            print(f"Error using Llama Parse: {str(e)}")
            print("Falling back to PyPDF parser")
            loader = PyPDFLoader(file.name)
            return loader.load_and_split()
    else:
        raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")

def get_embeddings():
    return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

def update_vectors(files, parser):
    global uploaded_documents
    logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
    
    if not files:
        logging.warning("No files provided for update_vectors")
        return "Please upload at least one PDF file.", gr.CheckboxGroup(
            choices=[doc["name"] for doc in uploaded_documents],
            value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
            label="Select documents to query"
        )
    
    embed = get_embeddings()
    total_chunks = 0
    
    all_data = []
    for file in files:
        logging.info(f"Processing file: {file.name}")
        try:
            data = load_document(file, parser)
            logging.info(f"Loaded {len(data)} chunks from {file.name}")
            all_data.extend(data)
            total_chunks += len(data)
            if not any(doc["name"] == file.name for doc in uploaded_documents):
                uploaded_documents.append({"name": file.name, "selected": True})
                logging.info(f"Added new document to uploaded_documents: {file.name}")
            else:
                logging.info(f"Document already exists in uploaded_documents: {file.name}")
        except Exception as e:
            logging.error(f"Error processing file {file.name}: {str(e)}")
    
    logging.info(f"Total chunks processed: {total_chunks}")
    
    if os.path.exists("faiss_database"):
        logging.info("Updating existing FAISS database")
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        database.add_documents(all_data)
    else:
        logging.info("Creating new FAISS database")
        database = FAISS.from_documents(all_data, embed)
    
    database.save_local("faiss_database")
    logging.info("FAISS database saved")
    
    return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
        choices=[doc["name"] for doc in uploaded_documents],
        value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
        label="Select documents to query"
    )

def duckduckgo_search(query):
    with DDGS() as ddgs:
        results = ddgs.text(query, max_results=5)
    return results

class CitingSources(BaseModel):
    sources: List[str] = Field(
        ...,
        description="List of sources to cite. Should be an URL of the source."
    )

def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
    headers = {
        "Authorization": f"Bearer {API_TOKEN}",
        "Content-Type": "application/json"
    }
    model = "@cf/meta/llama-3.1-8b-instruct"

    if search_type == "pdf":
        instruction = f"""Using the following context from the PDF documents:
{context}
Write a detailed and complete response that answers the following user question: '{query}'"""
    else:  # web search
        instruction = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""

    inputs = [
        {"role": "system", "content": instruction},
        {"role": "user", "content": query}
    ]

    payload = {
        "messages": inputs,
        "stream": True,
        "temperature": temperature
    }

    full_response = ""
    for i in range(num_calls):
        try:
            with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response:
                if response.status_code == 200:
                    for line in response.iter_lines():
                        if line:
                            try:
                                json_response = json.loads(line.decode('utf-8').split('data: ')[1])
                                if 'response' in json_response:
                                    chunk = json_response['response']
                                    full_response += chunk
                                    yield full_response
                            except (json.JSONDecodeError, IndexError) as e:
                                logging.error(f"Error parsing streaming response: {str(e)}")
                                continue
                else:
                    logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
                    yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
        except Exception as e:
            logging.error(f"Error in generating response from Cloudflare: {str(e)}")
            yield f"I apologize, but an error occurred: {str(e)}. Please try again later."
    
    if not full_response:
        yield "I apologize, but I couldn't generate a response at this time. Please try again later."

def get_response_with_search(query, model, num_calls=3, temperature=0.2):
    search_results = duckduckgo_search(query)
    context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n" 
                        for result in search_results if 'body' in result)
    
    prompt = f"""Using the following context:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""

    if model == "@cf/meta/llama-3.1-8b-instruct":
        # Use Cloudflare API
        for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
            yield response, ""  # Yield streaming response without sources
    else:
        # Use Hugging Face API
        client = InferenceClient(model, token=huggingface_token)
        
        main_content = ""
        for i in range(num_calls):
            for message in client.chat_completion(
                messages=[{"role": "user", "content": prompt}],
                max_tokens=1000,
                temperature=temperature,
                stream=True,
            ):
                if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                    chunk = message.choices[0].delta.content
                    main_content += chunk
                    yield main_content, ""  # Yield partial main content without sources

def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
    logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
    
    embed = get_embeddings()
    if os.path.exists("faiss_database"):
        logging.info("Loading FAISS database")
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
    else:
        logging.warning("No FAISS database found")
        yield "No documents available. Please upload PDF documents to answer questions."
        return

    retriever = database.as_retriever()
    logging.info(f"Retrieving relevant documents for query: {query}")
    relevant_docs = retriever.get_relevant_documents(query)
    logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
    
    # Filter relevant_docs based on selected documents
    filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
    logging.info(f"Number of filtered documents: {len(filtered_docs)}")
    
    if not filtered_docs:
        logging.warning(f"No relevant information found in the selected documents: {selected_docs}")
        yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
        return

    for doc in filtered_docs:
        logging.info(f"Document source: {doc.metadata['source']}")
        logging.info(f"Document content preview: {doc.page_content[:100]}...")  # Log first 100 characters of each document

    context_str = "\n".join([doc.page_content for doc in filtered_docs])
    logging.info(f"Total context length: {len(context_str)}")

    if model == "@cf/meta/llama-3.1-8b-instruct":
        logging.info("Using Cloudflare API")
        # Use Cloudflare API with the retrieved context
        for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
            yield response
    else:
        logging.info("Using Hugging Face API")
        # Use Hugging Face API
        prompt = f"""Using the following context from the PDF documents:
{context_str}
Write a detailed and complete response that answers the following user question: '{query}'"""
        
        client = InferenceClient(model, token=huggingface_token)
        
        response = ""
        for i in range(num_calls):
            logging.info(f"API call {i+1}/{num_calls}")
            for message in client.chat_completion(
                messages=[{"role": "user", "content": prompt}],
                max_tokens=1000,
                temperature=temperature,
                stream=True,
            ):
                if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                    chunk = message.choices[0].delta.content
                    response += chunk
                    yield response  # Yield partial response
        
        logging.info("Finished generating response")

def continue_response(last_response, context, query, model, temperature):
    prompt = f"""Using the following context and partial response:

Context:
{context}

Partial Response:
{last_response}

Continue the response to fully answer the query: '{query}'
Make sure the continuation flows smoothly from the previous part."""

    if model == "@cf/meta/llama-3.1-8b-instruct":
        return get_response_from_cloudflare(prompt="", context=context, query=prompt, num_calls=1, temperature=temperature, search_type="pdf")
    else:
        client = InferenceClient(model, token=huggingface_token)
        for message in client.chat_completion(
            messages=[{"role": "user", "content": prompt}],
            max_tokens=1000,
            temperature=temperature,
            stream=True,
        ):
            if message.choices and message.choices[0].delta and message.choices[0].delta.content:
                yield message.choices[0].delta.content

def chatbot_interface(message, history, use_web_search, model, temperature, num_calls, selected_docs):
    if not message.strip():
        return "", history

    history = history + [(message, "")]

    try:
        last_response = ""
        for response in respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
            last_response = response
            history[-1] = (message, response)
            yield history

        # Check if the response seems truncated
        if not last_response.strip().endswith((".", "!", "?")):
            history.append((None, "Response may be incomplete. Type 'continue' to generate more."))
            yield history
    except gr.CancelledError:
        yield history
    except Exception as e:
        logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
        history[-1] = (message, f"An unexpected error occurred: {str(e)}")
        yield history

def continue_generation(history, use_web_search, model, temperature, selected_docs):
    if not history:
        return history, gr.Button.update(visible=False)

    last_message = history[-1][0]
    last_response = history[-1][1]

    if use_web_search:
        search_results = duckduckgo_search(last_message)
        context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n" 
                            for result in search_results if 'body' in result)
    else:
        embed = get_embeddings()
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        retriever = database.as_retriever()
        relevant_docs = retriever.get_relevant_documents(last_message)
        filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
        context = "\n".join([doc.page_content for doc in filtered_docs])

    continuation = ""
    for chunk in continue_response(last_response, context, last_message, model, temperature):
        continuation += chunk
        history[-1] = (last_message, last_response + continuation)
        yield history, gr.Button.update(visible=True)

    if not (last_response + continuation).strip().endswith((".", "!", "?")):
        yield history, gr.Button.update(visible=True, text="Continue Generation")
    else:
        yield history, gr.Button.update(visible=False)

def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
    logging.info(f"User Query: {message}")
    logging.info(f"Model Used: {model}")
    logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
    logging.info(f"Selected Documents: {selected_docs}")

    # Check if the user wants to continue the previous response
    if message.strip().lower() == "continue" and history:
        last_message = history[-2][0]  # Get the last user message
        last_response = history[-2][1]  # Get the last bot response
        context = get_context(last_message, use_web_search, selected_docs)
        for continuation in continue_response(last_response, context, last_message, model, temperature):
            yield last_response + continuation
    else:
        try:
            if use_web_search:
                for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
                    response = f"{main_content}\n\n{sources}"
                    first_line = response.split('\n')[0] if response else ''
                    logging.info(f"Generated Response (first line): {first_line}")
                    yield response
            else:
                for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
                    first_line = partial_response.split('\n')[0] if partial_response else ''
                    logging.info(f"Generated Response (first line): {first_line}")
                    yield partial_response
        except Exception as e:
            logging.error(f"Error with {model}: {str(e)}")
            if "microsoft/Phi-3-mini-4k-instruct" in model:
                logging.info("Falling back to Mistral model due to Phi-3 error")
                fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
                yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
            else:
                yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."

def get_context(message, use_web_search, selected_docs):
    if use_web_search:
        search_results = duckduckgo_search(message)
        return "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n" 
                         for result in search_results if 'body' in result)
    else:
        embed = get_embeddings()
        database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
        retriever = database.as_retriever()
        relevant_docs = retriever.get_relevant_documents(message)
        filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
        return "\n".join([doc.page_content for doc in filtered_docs])


def vote(data: gr.LikeData):
    if data.liked:
        print(f"You upvoted this response: {data.value}")
    else:
        print(f"You downvoted this response: {data.value}")

css = """
/* Add your custom CSS here */
"""

uploaded_documents = []

def display_documents():
    return gr.CheckboxGroup(
        choices=[doc["name"] for doc in uploaded_documents],
        value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
        label="Select documents to query"
    )

# Define the checkbox outside the demo block
document_selector = gr.CheckboxGroup(label="Select documents to query")

use_web_search = gr.Checkbox(label="Use Web Search", value=False)

demo = gr.ChatInterface(
    chatbot_interface,
    additional_inputs=[
        gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
        use_web_search,
        document_selector  # Add the document selector to the chat interface
    ],
    title="AI-powered Web Search and PDF Chat Assistant",
    description="Chat with your PDFs or use web search to answer questions. Type 'continue' to generate more if a response seems incomplete.",
    theme=gr.themes.Soft(
        primary_hue="orange",
        secondary_hue="amber",
        neutral_hue="gray",
        font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
    ).set(
        body_background_fill_dark="#0c0505",
        block_background_fill_dark="#0c0505",
        block_border_width="1px",
        block_title_background_fill_dark="#1b0f0f",
        input_background_fill_dark="#140b0b",
        button_secondary_background_fill_dark="#140b0b",
        border_color_accent_dark="#1b0f0f",
        border_color_primary_dark="#1b0f0f",
        background_fill_secondary_dark="#0c0505",
        color_accent_soft_dark="transparent",
        code_background_fill_dark="#140b0b"
    ),
    css=css,
    examples=[
        ["Tell me about the contents of the uploaded PDFs."],
        ["What are the main topics discussed in the documents?"],
        ["Can you summarize the key points from the PDFs?"]
    ],
    cache_examples=False,
    analytics_enabled=False,
)

# Add file upload functionality
with demo:
    gr.Markdown("## Upload PDF Documents")
    with gr.Row():
        file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
        parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
        update_button = gr.Button("Upload Document")
    
    update_output = gr.Textbox(label="Update Status")
    
    # Update both the output text and the document selector
    update_button.click(update_vectors, 
                        inputs=[file_input, parser_dropdown], 
                        outputs=[update_output, document_selector])

    gr.Markdown(
    """
    ## How to use
    1. Upload PDF documents using the file input at the top.
    2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
    3. Select the documents you want to query using the checkboxes.
    4. Ask questions in the chat interface. 
    5. Toggle "Use Web Search" to switch between PDF chat and web search.
    6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
    7. Use the provided examples or ask your own questions.
    8. If a response seems incomplete, type 'continue' to generate more.
    """
    )

if __name__ == "__main__":
    demo.launch(share=True)