Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -20,9 +20,8 @@ huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
|
20 |
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
21 |
|
22 |
MODELS = [
|
23 |
-
"google/gemma-2-9b",
|
24 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
25 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
|
|
26 |
"microsoft/Phi-3-mini-4k-instruct"
|
27 |
]
|
28 |
|
@@ -78,76 +77,53 @@ def update_vectors(files, parser):
|
|
78 |
|
79 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
|
80 |
|
81 |
-
def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=3, temperature=0.2,
|
82 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
83 |
client = InferenceClient(model, token=huggingface_token)
|
84 |
-
|
85 |
messages = [{"role": "user", "content": prompt}]
|
86 |
|
87 |
for i in range(num_calls):
|
88 |
print(f"Starting API call {i+1}")
|
89 |
-
if
|
90 |
print("Stop clicked, breaking loop")
|
91 |
break
|
92 |
try:
|
93 |
-
response = ""
|
94 |
for message in client.chat_completion(
|
95 |
messages=messages,
|
96 |
max_tokens=max_tokens,
|
97 |
temperature=temperature,
|
98 |
stream=True,
|
99 |
):
|
100 |
-
if
|
101 |
print("Stop clicked during streaming, breaking")
|
102 |
break
|
103 |
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
104 |
chunk = message.choices[0].delta.content
|
105 |
-
|
106 |
-
print(f"API call {i+1}
|
107 |
-
full_responses.append(response)
|
108 |
except Exception as e:
|
109 |
print(f"Error in generating response: {str(e)}")
|
110 |
|
111 |
-
#
|
112 |
-
|
113 |
-
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', combined_response, flags=re.DOTALL)
|
114 |
clean_response = clean_response.replace("Using the following context:", "").strip()
|
115 |
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
|
116 |
|
117 |
-
#
|
118 |
-
|
119 |
-
main_content = parts[0].strip()
|
120 |
-
sources = parts[1].strip() if len(parts) > 1 else ""
|
121 |
-
|
122 |
-
# Process main content
|
123 |
-
paragraphs = main_content.split('\n\n')
|
124 |
unique_paragraphs = []
|
125 |
for paragraph in paragraphs:
|
126 |
if paragraph not in unique_paragraphs:
|
127 |
-
unique_sentences = []
|
128 |
sentences = paragraph.split('. ')
|
|
|
129 |
for sentence in sentences:
|
130 |
if sentence not in unique_sentences:
|
131 |
unique_sentences.append(sentence)
|
132 |
unique_paragraphs.append('. '.join(unique_sentences))
|
133 |
|
134 |
-
|
135 |
|
136 |
-
# Process sources
|
137 |
-
if sources:
|
138 |
-
source_lines = sources.split('\n')
|
139 |
-
unique_sources = []
|
140 |
-
for line in source_lines:
|
141 |
-
if line.strip() and line not in unique_sources:
|
142 |
-
unique_sources.append(line)
|
143 |
-
final_sources = '\n'.join(unique_sources)
|
144 |
-
final_response = f"{final_content}\n\nSources:\n{final_sources}"
|
145 |
-
else:
|
146 |
-
final_response = final_content
|
147 |
-
|
148 |
-
# Remove any content after the sources
|
149 |
-
final_response = re.sub(r'(Sources:.*?)(?:\n\n|\Z).*', r'\1', final_response, flags=re.DOTALL)
|
150 |
-
|
151 |
print(f"Final clean response: {final_response[:100]}...")
|
152 |
return final_response
|
153 |
|
@@ -161,104 +137,148 @@ class CitingSources(BaseModel):
|
|
161 |
...,
|
162 |
description="List of sources to cite. Should be an URL of the source."
|
163 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
def get_response_with_search(query, model, num_calls=3, temperature=0.2
|
166 |
search_results = duckduckgo_search(query)
|
167 |
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
168 |
for result in search_results if 'body' in result)
|
169 |
|
170 |
-
prompt = f"""
|
171 |
{context}
|
172 |
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
173 |
-
After writing the document, please provide a list of sources used in your response.
|
174 |
-
|
175 |
-
generated_text = generate_chunked_response(prompt, model, num_calls=num_calls, temperature=temperature, stop_clicked=stop_clicked)
|
176 |
-
|
177 |
-
# Clean the response
|
178 |
-
clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
|
179 |
-
clean_text = clean_text.replace("Using the following context:", "").strip()
|
180 |
|
181 |
-
|
182 |
-
parts = clean_text.split("Sources:", 1)
|
183 |
-
main_content = parts[0].strip()
|
184 |
-
sources = parts[1].strip() if len(parts) > 1 else ""
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
embed = get_embeddings()
|
190 |
if os.path.exists("faiss_database"):
|
191 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
192 |
else:
|
193 |
-
|
|
|
194 |
|
195 |
retriever = database.as_retriever()
|
196 |
relevant_docs = retriever.get_relevant_documents(query)
|
197 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
198 |
|
199 |
-
prompt = f"""
|
200 |
{context_str}
|
201 |
-
Write a detailed and complete response that answers the following user question: '{query}'
|
202 |
-
Do not include a list of sources in your response. [/INST]"""
|
203 |
-
|
204 |
-
generated_text = generate_chunked_response(prompt, model, num_calls=num_calls, temperature=temperature, stop_clicked=stop_clicked)
|
205 |
-
|
206 |
-
# Clean the response
|
207 |
-
clean_text = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', generated_text, flags=re.DOTALL)
|
208 |
-
clean_text = clean_text.replace("Using the following context from the PDF documents:", "").strip()
|
209 |
-
|
210 |
-
return clean_text
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
227 |
else:
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
-
|
261 |
-
|
|
|
262 |
with gr.Row():
|
263 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
264 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
@@ -266,111 +286,18 @@ with gr.Blocks() as demo:
|
|
266 |
|
267 |
update_output = gr.Textbox(label="Update Status")
|
268 |
update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
|
269 |
-
|
270 |
-
chatbot = gr.Chatbot(label="Conversation")
|
271 |
-
msg = gr.Textbox(label="Ask a question")
|
272 |
-
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
|
273 |
-
|
274 |
-
with gr.Row():
|
275 |
-
model_dropdown = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[1])
|
276 |
-
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature")
|
277 |
-
num_calls_slider = gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls")
|
278 |
-
|
279 |
-
with gr.Row():
|
280 |
-
submit_btn = gr.Button("Send")
|
281 |
-
stop_btn = gr.Button("Stop")
|
282 |
-
retry_btn = gr.Button("Retry")
|
283 |
-
undo_btn = gr.Button("Undo")
|
284 |
-
clear_btn = gr.Button("Clear")
|
285 |
-
|
286 |
-
def protected_generate_response(message, history, use_web_search, model, temperature, num_calls, is_generating, stop_clicked):
|
287 |
-
print("Starting protected_generate_response")
|
288 |
-
if is_generating:
|
289 |
-
print("Already generating, returning")
|
290 |
-
return message, history, is_generating, stop_clicked
|
291 |
-
|
292 |
-
is_generating = True
|
293 |
-
|
294 |
-
if isinstance(stop_clicked, gr.State):
|
295 |
-
stop_clicked.value = False
|
296 |
-
else:
|
297 |
-
stop_clicked = False
|
298 |
-
|
299 |
-
try:
|
300 |
-
print(f"Generating response for: {message}")
|
301 |
-
if use_web_search:
|
302 |
-
print("Using web search")
|
303 |
-
main_content, sources = get_response_with_search(message, model, num_calls=num_calls, temperature=temperature, stop_clicked=stop_clicked)
|
304 |
-
formatted_response = f"{main_content}\n\nSources:\n{sources}"
|
305 |
-
else:
|
306 |
-
print("Using PDF search")
|
307 |
-
formatted_response = get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature, stop_clicked=stop_clicked)
|
308 |
-
|
309 |
-
print(f"Generated response: {formatted_response[:100]}...")
|
310 |
-
|
311 |
-
except Exception as e:
|
312 |
-
print(f"Error generating response: {str(e)}")
|
313 |
-
formatted_response = "I'm sorry, but I encountered an error while generating the response. Please try again."
|
314 |
-
|
315 |
-
is_generating = False
|
316 |
-
print(f"Returning final response")
|
317 |
-
return "", history + [(message, formatted_response)], is_generating, stop_clicked
|
318 |
-
|
319 |
-
def on_submit(message, history, use_web_search, model, temperature, num_calls, is_generating, stop_clicked):
|
320 |
-
print(f"Submit button clicked with message: {message}")
|
321 |
-
_, new_history, new_is_generating, new_stop_clicked = protected_generate_response(
|
322 |
-
message, history, use_web_search, model, temperature, num_calls, is_generating, stop_clicked
|
323 |
-
)
|
324 |
-
print(f"New history has {len(new_history)} items")
|
325 |
-
return "", new_history, new_is_generating, new_stop_clicked
|
326 |
-
|
327 |
-
submit_btn.click(
|
328 |
-
on_submit,
|
329 |
-
inputs=[msg, chatbot, use_web_search, model_dropdown, temperature_slider, num_calls_slider, is_generating, stop_clicked],
|
330 |
-
outputs=[msg, chatbot, is_generating, stop_clicked],
|
331 |
-
show_progress=True
|
332 |
-
)
|
333 |
-
stop_btn.click(
|
334 |
-
lambda: True,
|
335 |
-
None,
|
336 |
-
stop_clicked
|
337 |
-
)
|
338 |
-
|
339 |
-
retry_btn.click(
|
340 |
-
retry_last_response,
|
341 |
-
inputs=[chatbot],
|
342 |
-
outputs=[msg, chatbot]
|
343 |
-
).then(
|
344 |
-
on_submit,
|
345 |
-
inputs=[msg, chatbot, use_web_search, model_dropdown, temperature_slider, num_calls_slider, is_generating, stop_clicked],
|
346 |
-
outputs=[msg, chatbot, is_generating, stop_clicked]
|
347 |
-
)
|
348 |
-
|
349 |
-
undo_btn.click(undo_last_interaction, inputs=[chatbot], outputs=[chatbot])
|
350 |
-
clear_btn.click(clear_conversation, outputs=[chatbot])
|
351 |
-
|
352 |
-
gr.Examples(
|
353 |
-
examples=[
|
354 |
-
["What are the latest developments in AI?"],
|
355 |
-
["Tell me about recent updates on GitHub"],
|
356 |
-
["What are the best hotels in Galapagos, Ecuador?"],
|
357 |
-
["Summarize recent advancements in Python programming"],
|
358 |
-
],
|
359 |
-
inputs=msg,
|
360 |
-
)
|
361 |
|
362 |
gr.Markdown(
|
363 |
"""
|
364 |
## How to use
|
365 |
1. Upload PDF documents using the file input at the top.
|
366 |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
367 |
-
3. Ask questions in the
|
368 |
4. Toggle "Use Web Search" to switch between PDF chat and web search.
|
369 |
-
5. Adjust Temperature and Number of API Calls
|
370 |
-
6.
|
371 |
-
7. Use "Retry" to regenerate the last response, "Undo" to remove the last interaction, and "Clear" to reset the conversation.
|
372 |
-
8. Click "Stop" during generation to halt the process.
|
373 |
"""
|
374 |
)
|
|
|
375 |
if __name__ == "__main__":
|
376 |
demo.launch(share=True)
|
|
|
20 |
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
21 |
|
22 |
MODELS = [
|
|
|
|
|
23 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
24 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
25 |
"microsoft/Phi-3-mini-4k-instruct"
|
26 |
]
|
27 |
|
|
|
77 |
|
78 |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
|
79 |
|
80 |
+
def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=3, temperature=0.2, should_stop=False):
|
81 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
82 |
client = InferenceClient(model, token=huggingface_token)
|
83 |
+
full_response = ""
|
84 |
messages = [{"role": "user", "content": prompt}]
|
85 |
|
86 |
for i in range(num_calls):
|
87 |
print(f"Starting API call {i+1}")
|
88 |
+
if should_stop:
|
89 |
print("Stop clicked, breaking loop")
|
90 |
break
|
91 |
try:
|
|
|
92 |
for message in client.chat_completion(
|
93 |
messages=messages,
|
94 |
max_tokens=max_tokens,
|
95 |
temperature=temperature,
|
96 |
stream=True,
|
97 |
):
|
98 |
+
if should_stop:
|
99 |
print("Stop clicked during streaming, breaking")
|
100 |
break
|
101 |
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
102 |
chunk = message.choices[0].delta.content
|
103 |
+
full_response += chunk
|
104 |
+
print(f"API call {i+1} completed")
|
|
|
105 |
except Exception as e:
|
106 |
print(f"Error in generating response: {str(e)}")
|
107 |
|
108 |
+
# Clean up the response
|
109 |
+
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
|
|
|
110 |
clean_response = clean_response.replace("Using the following context:", "").strip()
|
111 |
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
|
112 |
|
113 |
+
# Remove duplicate paragraphs and sentences
|
114 |
+
paragraphs = clean_response.split('\n\n')
|
|
|
|
|
|
|
|
|
|
|
115 |
unique_paragraphs = []
|
116 |
for paragraph in paragraphs:
|
117 |
if paragraph not in unique_paragraphs:
|
|
|
118 |
sentences = paragraph.split('. ')
|
119 |
+
unique_sentences = []
|
120 |
for sentence in sentences:
|
121 |
if sentence not in unique_sentences:
|
122 |
unique_sentences.append(sentence)
|
123 |
unique_paragraphs.append('. '.join(unique_sentences))
|
124 |
|
125 |
+
final_response = '\n\n'.join(unique_paragraphs)
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
print(f"Final clean response: {final_response[:100]}...")
|
128 |
return final_response
|
129 |
|
|
|
137 |
...,
|
138 |
description="List of sources to cite. Should be an URL of the source."
|
139 |
)
|
140 |
+
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
|
141 |
+
if not message.strip():
|
142 |
+
return "", history
|
143 |
+
|
144 |
+
history = history + [(message, "")]
|
145 |
+
|
146 |
+
try:
|
147 |
+
if use_web_search:
|
148 |
+
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
149 |
+
history[-1] = (message, f"{main_content}\n\n{sources}")
|
150 |
+
yield history
|
151 |
+
else:
|
152 |
+
for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature):
|
153 |
+
history[-1] = (message, partial_response)
|
154 |
+
yield history
|
155 |
+
except gr.CancelledError:
|
156 |
+
yield history
|
157 |
+
|
158 |
+
def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
159 |
+
if not history:
|
160 |
+
return history
|
161 |
+
|
162 |
+
last_user_msg = history[-1][0]
|
163 |
+
history = history[:-1] # Remove the last response
|
164 |
+
|
165 |
+
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
166 |
+
|
167 |
+
def respond(message, history, model, temperature, num_calls, use_web_search):
|
168 |
+
if use_web_search:
|
169 |
+
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
170 |
+
yield f"{main_content}\n\n{sources}"
|
171 |
+
else:
|
172 |
+
for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature):
|
173 |
+
yield partial_response
|
174 |
|
175 |
+
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
176 |
search_results = duckduckgo_search(query)
|
177 |
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
178 |
for result in search_results if 'body' in result)
|
179 |
|
180 |
+
prompt = f"""Using the following context:
|
181 |
{context}
|
182 |
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
183 |
+
After writing the document, please provide a list of sources used in your response."""
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
client = InferenceClient(model, token=huggingface_token)
|
|
|
|
|
|
|
186 |
|
187 |
+
main_content = ""
|
188 |
+
for i in range(num_calls):
|
189 |
+
for message in client.chat_completion(
|
190 |
+
messages=[{"role": "user", "content": prompt}],
|
191 |
+
max_tokens=1000,
|
192 |
+
temperature=temperature,
|
193 |
+
stream=True,
|
194 |
+
):
|
195 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
196 |
+
chunk = message.choices[0].delta.content
|
197 |
+
main_content += chunk
|
198 |
+
yield main_content, "" # Yield partial main content without sources
|
199 |
+
|
200 |
+
def get_response_from_pdf(query, model, num_calls=3, temperature=0.2):
|
201 |
embed = get_embeddings()
|
202 |
if os.path.exists("faiss_database"):
|
203 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
204 |
else:
|
205 |
+
yield "No documents available. Please upload PDF documents to answer questions."
|
206 |
+
return
|
207 |
|
208 |
retriever = database.as_retriever()
|
209 |
relevant_docs = retriever.get_relevant_documents(query)
|
210 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
211 |
|
212 |
+
prompt = f"""Using the following context from the PDF documents:
|
213 |
{context_str}
|
214 |
+
Write a detailed and complete response that answers the following user question: '{query}'"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
client = InferenceClient(model, token=huggingface_token)
|
217 |
+
|
218 |
+
response = ""
|
219 |
+
for i in range(num_calls):
|
220 |
+
for message in client.chat_completion(
|
221 |
+
messages=[{"role": "user", "content": prompt}],
|
222 |
+
max_tokens=1000,
|
223 |
+
temperature=temperature,
|
224 |
+
stream=True,
|
225 |
+
):
|
226 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
227 |
+
chunk = message.choices[0].delta.content
|
228 |
+
response += chunk
|
229 |
+
yield response # Yield partial response
|
230 |
+
|
231 |
+
def vote(data: gr.LikeData):
|
232 |
+
if data.liked:
|
233 |
+
print(f"You upvoted this response: {data.value}")
|
234 |
else:
|
235 |
+
print(f"You downvoted this response: {data.value}")
|
236 |
+
|
237 |
+
css = """
|
238 |
+
/* Add your custom CSS here */
|
239 |
+
"""
|
240 |
+
|
241 |
+
demo = gr.ChatInterface(
|
242 |
+
respond,
|
243 |
+
additional_inputs=[
|
244 |
+
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[1]),
|
245 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
246 |
+
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
247 |
+
gr.Checkbox(label="Use Web Search", value=False)
|
248 |
+
],
|
249 |
+
title="AI-powered Web Search and PDF Chat Assistant",
|
250 |
+
description="Chat with your PDFs or use web search to answer questions.",
|
251 |
+
theme=gr.themes.Soft(
|
252 |
+
primary_hue="orange",
|
253 |
+
secondary_hue="amber",
|
254 |
+
neutral_hue="gray",
|
255 |
+
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
|
256 |
+
).set(
|
257 |
+
body_background_fill_dark="#0c0505",
|
258 |
+
block_background_fill_dark="#0c0505",
|
259 |
+
block_border_width="1px",
|
260 |
+
block_title_background_fill_dark="#1b0f0f",
|
261 |
+
input_background_fill_dark="#140b0b",
|
262 |
+
button_secondary_background_fill_dark="#140b0b",
|
263 |
+
border_color_accent_dark="#1b0f0f",
|
264 |
+
border_color_primary_dark="#1b0f0f",
|
265 |
+
background_fill_secondary_dark="#0c0505",
|
266 |
+
color_accent_soft_dark="transparent",
|
267 |
+
code_background_fill_dark="#140b0b"
|
268 |
+
),
|
269 |
+
css=css,
|
270 |
+
examples=[
|
271 |
+
["Tell me about the contents of the uploaded PDFs."],
|
272 |
+
["What are the main topics discussed in the documents?"],
|
273 |
+
["Can you summarize the key points from the PDFs?"]
|
274 |
+
],
|
275 |
+
cache_examples=False,
|
276 |
+
analytics_enabled=False,
|
277 |
+
)
|
278 |
|
279 |
+
# Add file upload functionality
|
280 |
+
with demo:
|
281 |
+
gr.Markdown("## Upload PDF Documents")
|
282 |
with gr.Row():
|
283 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
284 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
|
|
286 |
|
287 |
update_output = gr.Textbox(label="Update Status")
|
288 |
update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
gr.Markdown(
|
291 |
"""
|
292 |
## How to use
|
293 |
1. Upload PDF documents using the file input at the top.
|
294 |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
295 |
+
3. Ask questions in the chat interface.
|
296 |
4. Toggle "Use Web Search" to switch between PDF chat and web search.
|
297 |
+
5. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
298 |
+
6. Use the provided examples or ask your own questions.
|
|
|
|
|
299 |
"""
|
300 |
)
|
301 |
+
|
302 |
if __name__ == "__main__":
|
303 |
demo.launch(share=True)
|