Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,6 @@ from huggingface_hub import InferenceClient
|
|
16 |
import inspect
|
17 |
import logging
|
18 |
|
19 |
-
|
20 |
# Set up basic configuration for logging
|
21 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
22 |
|
@@ -88,7 +87,6 @@ def update_vectors(files, parser):
|
|
88 |
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
89 |
all_data.extend(data)
|
90 |
total_chunks += len(data)
|
91 |
-
# Append new documents instead of replacing
|
92 |
if not any(doc["name"] == file.name for doc in uploaded_documents):
|
93 |
uploaded_documents.append({"name": file.name, "selected": True})
|
94 |
logging.info(f"Added new document to uploaded_documents: {file.name}")
|
@@ -116,96 +114,6 @@ def update_vectors(files, parser):
|
|
116 |
label="Select documents to query"
|
117 |
)
|
118 |
|
119 |
-
def generate_chunked_response(prompt, model, max_tokens=1000, num_calls=3, temperature=0.2, should_stop=False):
|
120 |
-
print(f"Starting generate_chunked_response with {num_calls} calls")
|
121 |
-
full_response = ""
|
122 |
-
messages = [{"role": "user", "content": prompt}]
|
123 |
-
|
124 |
-
if model == "@cf/meta/llama-3.1-8b-instruct":
|
125 |
-
# Cloudflare API
|
126 |
-
for i in range(num_calls):
|
127 |
-
print(f"Starting Cloudflare API call {i+1}")
|
128 |
-
if should_stop:
|
129 |
-
print("Stop clicked, breaking loop")
|
130 |
-
break
|
131 |
-
try:
|
132 |
-
response = requests.post(
|
133 |
-
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
|
134 |
-
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
135 |
-
json={
|
136 |
-
"stream": true,
|
137 |
-
"messages": [
|
138 |
-
{"role": "system", "content": "You are a friendly assistant"},
|
139 |
-
{"role": "user", "content": prompt}
|
140 |
-
],
|
141 |
-
"max_tokens": max_tokens,
|
142 |
-
"temperature": temperature
|
143 |
-
},
|
144 |
-
stream=true
|
145 |
-
)
|
146 |
-
|
147 |
-
for line in response.iter_lines():
|
148 |
-
if should_stop:
|
149 |
-
print("Stop clicked during streaming, breaking")
|
150 |
-
break
|
151 |
-
if line:
|
152 |
-
try:
|
153 |
-
json_data = json.loads(line.decode('utf-8').split('data: ')[1])
|
154 |
-
chunk = json_data['response']
|
155 |
-
full_response += chunk
|
156 |
-
except json.JSONDecodeError:
|
157 |
-
continue
|
158 |
-
print(f"Cloudflare API call {i+1} completed")
|
159 |
-
except Exception as e:
|
160 |
-
print(f"Error in generating response from Cloudflare: {str(e)}")
|
161 |
-
else:
|
162 |
-
# Original Hugging Face API logic
|
163 |
-
client = InferenceClient(model, token=huggingface_token)
|
164 |
-
|
165 |
-
for i in range(num_calls):
|
166 |
-
print(f"Starting Hugging Face API call {i+1}")
|
167 |
-
if should_stop:
|
168 |
-
print("Stop clicked, breaking loop")
|
169 |
-
break
|
170 |
-
try:
|
171 |
-
for message in client.chat_completion(
|
172 |
-
messages=messages,
|
173 |
-
max_tokens=max_tokens,
|
174 |
-
temperature=temperature,
|
175 |
-
stream=True,
|
176 |
-
):
|
177 |
-
if should_stop:
|
178 |
-
print("Stop clicked during streaming, breaking")
|
179 |
-
break
|
180 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
181 |
-
chunk = message.choices[0].delta.content
|
182 |
-
full_response += chunk
|
183 |
-
print(f"Hugging Face API call {i+1} completed")
|
184 |
-
except Exception as e:
|
185 |
-
print(f"Error in generating response from Hugging Face: {str(e)}")
|
186 |
-
|
187 |
-
# Clean up the response
|
188 |
-
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
|
189 |
-
clean_response = clean_response.replace("Using the following context:", "").strip()
|
190 |
-
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
|
191 |
-
|
192 |
-
# Remove duplicate paragraphs and sentences
|
193 |
-
paragraphs = clean_response.split('\n\n')
|
194 |
-
unique_paragraphs = []
|
195 |
-
for paragraph in paragraphs:
|
196 |
-
if paragraph not in unique_paragraphs:
|
197 |
-
sentences = paragraph.split('. ')
|
198 |
-
unique_sentences = []
|
199 |
-
for sentence in sentences:
|
200 |
-
if sentence not in unique_sentences:
|
201 |
-
unique_sentences.append(sentence)
|
202 |
-
unique_paragraphs.append('. '.join(unique_sentences))
|
203 |
-
|
204 |
-
final_response = '\n\n'.join(unique_paragraphs)
|
205 |
-
|
206 |
-
print(f"Final clean response: {final_response[:100]}...")
|
207 |
-
return final_response
|
208 |
-
|
209 |
def duckduckgo_search(query):
|
210 |
with DDGS() as ddgs:
|
211 |
results = ddgs.text(query, max_results=5)
|
@@ -217,72 +125,6 @@ class CitingSources(BaseModel):
|
|
217 |
description="List of sources to cite. Should be an URL of the source."
|
218 |
)
|
219 |
|
220 |
-
def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
221 |
-
if not history:
|
222 |
-
return history
|
223 |
-
|
224 |
-
last_user_msg = history[-1][0]
|
225 |
-
history = history[:-1] # Remove the last response
|
226 |
-
|
227 |
-
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
228 |
-
|
229 |
-
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
230 |
-
logging.info(f"User Query: {message}")
|
231 |
-
logging.info(f"Model Used: {model}")
|
232 |
-
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
233 |
-
|
234 |
-
logging.info(f"Selected Documents: {selected_docs}")
|
235 |
-
|
236 |
-
try:
|
237 |
-
if use_web_search:
|
238 |
-
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
239 |
-
response = f"{main_content}\n\n{sources}"
|
240 |
-
first_line = response.split('\n')[0] if response else ''
|
241 |
-
logging.info(f"Generated Response (first line): {first_line}")
|
242 |
-
yield response
|
243 |
-
else:
|
244 |
-
embed = get_embeddings()
|
245 |
-
if os.path.exists("faiss_database"):
|
246 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
247 |
-
retriever = database.as_retriever()
|
248 |
-
|
249 |
-
# Filter relevant documents based on user selection
|
250 |
-
all_relevant_docs = retriever.get_relevant_documents(message)
|
251 |
-
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
252 |
-
|
253 |
-
if not relevant_docs:
|
254 |
-
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
255 |
-
return
|
256 |
-
|
257 |
-
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
258 |
-
else:
|
259 |
-
context_str = "No documents available."
|
260 |
-
yield "No documents available. Please upload PDF documents to answer questions."
|
261 |
-
return
|
262 |
-
|
263 |
-
if model == "@cf/meta/llama-3.1-8b-instruct":
|
264 |
-
# Use Cloudflare API
|
265 |
-
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
266 |
-
first_line = partial_response.split('\n')[0] if partial_response else ''
|
267 |
-
logging.info(f"Generated Response (first line): {first_line}")
|
268 |
-
yield partial_response
|
269 |
-
else:
|
270 |
-
# Use Hugging Face API
|
271 |
-
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
272 |
-
first_line = partial_response.split('\n')[0] if partial_response else ''
|
273 |
-
logging.info(f"Generated Response (first line): {first_line}")
|
274 |
-
yield partial_response
|
275 |
-
except Exception as e:
|
276 |
-
logging.error(f"Error with {model}: {str(e)}")
|
277 |
-
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
278 |
-
logging.info("Falling back to Mistral model due to Phi-3 error")
|
279 |
-
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
280 |
-
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
|
281 |
-
else:
|
282 |
-
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
283 |
-
|
284 |
-
logging.basicConfig(level=logging.DEBUG)
|
285 |
-
|
286 |
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
|
287 |
headers = {
|
288 |
"Authorization": f"Bearer {API_TOKEN}",
|
@@ -337,6 +179,37 @@ After writing the document, please provide a list of sources used in your respon
|
|
337 |
if not full_response:
|
338 |
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
|
339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
341 |
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
342 |
|
@@ -354,6 +227,7 @@ def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=
|
|
354 |
relevant_docs = retriever.get_relevant_documents(query)
|
355 |
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
356 |
|
|
|
357 |
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
358 |
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
359 |
|
@@ -362,24 +236,28 @@ def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=
|
|
362 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
363 |
return
|
364 |
|
|
|
|
|
|
|
|
|
365 |
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
366 |
logging.info(f"Total context length: {len(context_str)}")
|
367 |
|
368 |
-
full_response = ""
|
369 |
-
|
370 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
371 |
logging.info("Using Cloudflare API")
|
|
|
372 |
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
373 |
-
|
374 |
-
yield full_response
|
375 |
else:
|
376 |
logging.info("Using Hugging Face API")
|
|
|
377 |
prompt = f"""Using the following context from the PDF documents:
|
378 |
{context_str}
|
379 |
Write a detailed and complete response that answers the following user question: '{query}'"""
|
380 |
|
381 |
client = InferenceClient(model, token=huggingface_token)
|
382 |
|
|
|
383 |
for i in range(num_calls):
|
384 |
logging.info(f"API call {i+1}/{num_calls}")
|
385 |
for message in client.chat_completion(
|
@@ -390,51 +268,36 @@ Write a detailed and complete response that answers the following user question:
|
|
390 |
):
|
391 |
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
392 |
chunk = message.choices[0].delta.content
|
393 |
-
|
394 |
-
yield
|
395 |
-
|
396 |
-
|
397 |
|
398 |
-
def
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
prompt = f"""Using the following context:
|
404 |
{context}
|
405 |
-
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
406 |
-
After writing the document, please provide a list of sources used in your response."""
|
407 |
|
408 |
-
|
|
|
|
|
|
|
|
|
409 |
|
410 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
411 |
-
|
412 |
-
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
|
413 |
-
full_response += response
|
414 |
-
yield full_response, "" # Yield streaming response without sources
|
415 |
else:
|
416 |
-
# Use Hugging Face API
|
417 |
client = InferenceClient(model, token=huggingface_token)
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
427 |
-
chunk = message.choices[0].delta.content
|
428 |
-
full_response += chunk
|
429 |
-
yield full_response, "" # Yield partial main content without sources
|
430 |
-
|
431 |
-
logging.info("Finished generating initial response")
|
432 |
|
433 |
-
def vote(data: gr.LikeData):
|
434 |
-
if data.liked:
|
435 |
-
print(f"You upvoted this response: {data.value}")
|
436 |
-
else:
|
437 |
-
print(f"You downvoted this response: {data.value}")
|
438 |
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls, selected_docs):
|
439 |
if not message.strip():
|
440 |
return "", history
|
@@ -442,15 +305,16 @@ def chatbot_interface(message, history, use_web_search, model, temperature, num_
|
|
442 |
history = history + [(message, "")]
|
443 |
|
444 |
try:
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
|
|
454 |
except gr.CancelledError:
|
455 |
yield history
|
456 |
except Exception as e:
|
@@ -460,50 +324,88 @@ def chatbot_interface(message, history, use_web_search, model, temperature, num_
|
|
460 |
|
461 |
def continue_generation(history, use_web_search, model, temperature, selected_docs):
|
462 |
if not history:
|
463 |
-
return history
|
464 |
-
|
465 |
-
last_user_msg = history[-1][0]
|
466 |
-
previous_response = history[-1][1]
|
467 |
-
|
468 |
-
try:
|
469 |
-
if use_web_search:
|
470 |
-
search_results = duckduckgo_search(last_user_msg)
|
471 |
-
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
472 |
-
for result in search_results if 'body' in result)
|
473 |
-
else:
|
474 |
-
embed = get_embeddings()
|
475 |
-
if os.path.exists("faiss_database"):
|
476 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
477 |
-
retriever = database.as_retriever()
|
478 |
-
relevant_docs = retriever.get_relevant_documents(last_user_msg)
|
479 |
-
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
480 |
-
context = "\n".join([doc.page_content for doc in filtered_docs])
|
481 |
-
else:
|
482 |
-
return history
|
483 |
-
|
484 |
-
prompt = f"""Using the following context and partial response, please continue and complete the response:
|
485 |
|
486 |
-
|
487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
|
489 |
-
|
|
|
|
|
|
|
|
|
490 |
|
491 |
-
|
492 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
|
494 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
yield history
|
503 |
-
except Exception as e:
|
504 |
-
logging.error(f"Unexpected error in continue_generation: {str(e)}")
|
505 |
-
history[-1] = (last_user_msg, f"{previous_response}\n\nAn error occurred while continuing generation: {str(e)}")
|
506 |
-
yield history
|
507 |
|
508 |
css = """
|
509 |
/* Add your custom CSS here */
|
@@ -518,7 +420,9 @@ def display_documents():
|
|
518 |
label="Select documents to query"
|
519 |
)
|
520 |
|
|
|
521 |
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
|
|
522 |
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
|
523 |
|
524 |
demo = gr.ChatInterface(
|
@@ -528,14 +432,10 @@ demo = gr.ChatInterface(
|
|
528 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
529 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
530 |
use_web_search,
|
531 |
-
document_selector
|
532 |
-
],
|
533 |
-
additional_buttons=[
|
534 |
-
gr.Button("Continue Generation"),
|
535 |
-
gr.Button("Upload Document")
|
536 |
],
|
537 |
title="AI-powered Web Search and PDF Chat Assistant",
|
538 |
-
description="Chat with your PDFs or use web search to answer questions.",
|
539 |
theme=gr.themes.Soft(
|
540 |
primary_hue="orange",
|
541 |
secondary_hue="amber",
|
@@ -567,26 +467,17 @@ demo = gr.ChatInterface(
|
|
567 |
# Add file upload functionality
|
568 |
with demo:
|
569 |
gr.Markdown("## Upload PDF Documents")
|
570 |
-
|
571 |
with gr.Row():
|
572 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
573 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
|
|
574 |
|
575 |
update_output = gr.Textbox(label="Update Status")
|
576 |
|
577 |
# Update both the output text and the document selector
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
outputs=[update_output, document_selector]
|
582 |
-
)
|
583 |
-
|
584 |
-
# Set up the continue generation button
|
585 |
-
demo.additional_buttons[0].click(
|
586 |
-
continue_generation,
|
587 |
-
inputs=[demo.chatbot, use_web_search, demo.additional_inputs[0], demo.additional_inputs[1], document_selector],
|
588 |
-
outputs=demo.chatbot
|
589 |
-
)
|
590 |
|
591 |
gr.Markdown(
|
592 |
"""
|
@@ -597,8 +488,8 @@ with demo:
|
|
597 |
4. Ask questions in the chat interface.
|
598 |
5. Toggle "Use Web Search" to switch between PDF chat and web search.
|
599 |
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
600 |
-
7. Use the
|
601 |
-
8.
|
602 |
"""
|
603 |
)
|
604 |
|
|
|
16 |
import inspect
|
17 |
import logging
|
18 |
|
|
|
19 |
# Set up basic configuration for logging
|
20 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
21 |
|
|
|
87 |
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
88 |
all_data.extend(data)
|
89 |
total_chunks += len(data)
|
|
|
90 |
if not any(doc["name"] == file.name for doc in uploaded_documents):
|
91 |
uploaded_documents.append({"name": file.name, "selected": True})
|
92 |
logging.info(f"Added new document to uploaded_documents: {file.name}")
|
|
|
114 |
label="Select documents to query"
|
115 |
)
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
def duckduckgo_search(query):
|
118 |
with DDGS() as ddgs:
|
119 |
results = ddgs.text(query, max_results=5)
|
|
|
125 |
description="List of sources to cite. Should be an URL of the source."
|
126 |
)
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"):
|
129 |
headers = {
|
130 |
"Authorization": f"Bearer {API_TOKEN}",
|
|
|
179 |
if not full_response:
|
180 |
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
|
181 |
|
182 |
+
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
183 |
+
search_results = duckduckgo_search(query)
|
184 |
+
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
185 |
+
for result in search_results if 'body' in result)
|
186 |
+
|
187 |
+
prompt = f"""Using the following context:
|
188 |
+
{context}
|
189 |
+
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
190 |
+
After writing the document, please provide a list of sources used in your response."""
|
191 |
+
|
192 |
+
if model == "@cf/meta/llama-3.1-8b-instruct":
|
193 |
+
# Use Cloudflare API
|
194 |
+
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
|
195 |
+
yield response, "" # Yield streaming response without sources
|
196 |
+
else:
|
197 |
+
# Use Hugging Face API
|
198 |
+
client = InferenceClient(model, token=huggingface_token)
|
199 |
+
|
200 |
+
main_content = ""
|
201 |
+
for i in range(num_calls):
|
202 |
+
for message in client.chat_completion(
|
203 |
+
messages=[{"role": "user", "content": prompt}],
|
204 |
+
max_tokens=1000,
|
205 |
+
temperature=temperature,
|
206 |
+
stream=True,
|
207 |
+
):
|
208 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
209 |
+
chunk = message.choices[0].delta.content
|
210 |
+
main_content += chunk
|
211 |
+
yield main_content, "" # Yield partial main content without sources
|
212 |
+
|
213 |
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
214 |
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
215 |
|
|
|
227 |
relevant_docs = retriever.get_relevant_documents(query)
|
228 |
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
229 |
|
230 |
+
# Filter relevant_docs based on selected documents
|
231 |
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
232 |
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
233 |
|
|
|
236 |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
237 |
return
|
238 |
|
239 |
+
for doc in filtered_docs:
|
240 |
+
logging.info(f"Document source: {doc.metadata['source']}")
|
241 |
+
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
|
242 |
+
|
243 |
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
244 |
logging.info(f"Total context length: {len(context_str)}")
|
245 |
|
|
|
|
|
246 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
247 |
logging.info("Using Cloudflare API")
|
248 |
+
# Use Cloudflare API with the retrieved context
|
249 |
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
250 |
+
yield response
|
|
|
251 |
else:
|
252 |
logging.info("Using Hugging Face API")
|
253 |
+
# Use Hugging Face API
|
254 |
prompt = f"""Using the following context from the PDF documents:
|
255 |
{context_str}
|
256 |
Write a detailed and complete response that answers the following user question: '{query}'"""
|
257 |
|
258 |
client = InferenceClient(model, token=huggingface_token)
|
259 |
|
260 |
+
response = ""
|
261 |
for i in range(num_calls):
|
262 |
logging.info(f"API call {i+1}/{num_calls}")
|
263 |
for message in client.chat_completion(
|
|
|
268 |
):
|
269 |
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
270 |
chunk = message.choices[0].delta.content
|
271 |
+
response += chunk
|
272 |
+
yield response # Yield partial response
|
273 |
+
|
274 |
+
logging.info("Finished generating response")
|
275 |
|
276 |
+
def continue_response(last_response, context, query, model, temperature):
|
277 |
+
prompt = f"""Using the following context and partial response:
|
278 |
+
|
279 |
+
Context:
|
|
|
|
|
280 |
{context}
|
|
|
|
|
281 |
|
282 |
+
Partial Response:
|
283 |
+
{last_response}
|
284 |
+
|
285 |
+
Continue the response to fully answer the query: '{query}'
|
286 |
+
Make sure the continuation flows smoothly from the previous part."""
|
287 |
|
288 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
289 |
+
return get_response_from_cloudflare(prompt="", context=context, query=prompt, num_calls=1, temperature=temperature, search_type="pdf")
|
|
|
|
|
|
|
290 |
else:
|
|
|
291 |
client = InferenceClient(model, token=huggingface_token)
|
292 |
+
for message in client.chat_completion(
|
293 |
+
messages=[{"role": "user", "content": prompt}],
|
294 |
+
max_tokens=1000,
|
295 |
+
temperature=temperature,
|
296 |
+
stream=True,
|
297 |
+
):
|
298 |
+
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
299 |
+
yield message.choices[0].delta.content
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
|
|
|
|
|
|
|
|
|
|
301 |
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls, selected_docs):
|
302 |
if not message.strip():
|
303 |
return "", history
|
|
|
305 |
history = history + [(message, "")]
|
306 |
|
307 |
try:
|
308 |
+
last_response = ""
|
309 |
+
for response in respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
310 |
+
last_response = response
|
311 |
+
history[-1] = (message, response)
|
312 |
+
yield history
|
313 |
+
|
314 |
+
# Check if the response seems truncated
|
315 |
+
if not last_response.strip().endswith((".", "!", "?")):
|
316 |
+
history.append((None, "Response may be incomplete. Type 'continue' to generate more."))
|
317 |
+
yield history
|
318 |
except gr.CancelledError:
|
319 |
yield history
|
320 |
except Exception as e:
|
|
|
324 |
|
325 |
def continue_generation(history, use_web_search, model, temperature, selected_docs):
|
326 |
if not history:
|
327 |
+
return history, gr.Button.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
+
last_message = history[-1][0]
|
330 |
+
last_response = history[-1][1]
|
331 |
+
|
332 |
+
if use_web_search:
|
333 |
+
search_results = duckduckgo_search(last_message)
|
334 |
+
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
335 |
+
for result in search_results if 'body' in result)
|
336 |
+
else:
|
337 |
+
embed = get_embeddings()
|
338 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
339 |
+
retriever = database.as_retriever()
|
340 |
+
relevant_docs = retriever.get_relevant_documents(last_message)
|
341 |
+
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
342 |
+
context = "\n".join([doc.page_content for doc in filtered_docs])
|
343 |
+
|
344 |
+
continuation = ""
|
345 |
+
for chunk in continue_response(last_response, context, last_message, model, temperature):
|
346 |
+
continuation += chunk
|
347 |
+
history[-1] = (last_message, last_response + continuation)
|
348 |
+
yield history, gr.Button.update(visible=True)
|
349 |
+
|
350 |
+
if not (last_response + continuation).strip().endswith((".", "!", "?")):
|
351 |
+
yield history, gr.Button.update(visible=True, text="Continue Generation")
|
352 |
+
else:
|
353 |
+
yield history, gr.Button.update(visible=False)
|
354 |
|
355 |
+
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
356 |
+
logging.info(f"User Query: {message}")
|
357 |
+
logging.info(f"Model Used: {model}")
|
358 |
+
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
359 |
+
logging.info(f"Selected Documents: {selected_docs}")
|
360 |
|
361 |
+
# Check if the user wants to continue the previous response
|
362 |
+
if message.strip().lower() == "continue" and history:
|
363 |
+
last_message = history[-2][0] # Get the last user message
|
364 |
+
last_response = history[-2][1] # Get the last bot response
|
365 |
+
context = get_context(last_message, use_web_search, selected_docs)
|
366 |
+
for continuation in continue_response(last_response, context, last_message, model, temperature):
|
367 |
+
yield last_response + continuation
|
368 |
+
else:
|
369 |
+
try:
|
370 |
+
if use_web_search:
|
371 |
+
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
372 |
+
response = f"{main_content}\n\n{sources}"
|
373 |
+
first_line = response.split('\n')[0] if response else ''
|
374 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
375 |
+
yield response
|
376 |
+
else:
|
377 |
+
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
378 |
+
first_line = partial_response.split('\n')[0] if partial_response else ''
|
379 |
+
logging.info(f"Generated Response (first line): {first_line}")
|
380 |
+
yield partial_response
|
381 |
+
except Exception as e:
|
382 |
+
logging.error(f"Error with {model}: {str(e)}")
|
383 |
+
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
384 |
+
logging.info("Falling back to Mistral model due to Phi-3 error")
|
385 |
+
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
386 |
+
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
|
387 |
+
else:
|
388 |
+
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
389 |
|
390 |
+
def get_context(message, use_web_search, selected_docs):
|
391 |
+
if use_web_search:
|
392 |
+
search_results = duckduckgo_search(message)
|
393 |
+
return "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
394 |
+
for result in search_results if 'body' in result)
|
395 |
+
else:
|
396 |
+
embed = get_embeddings()
|
397 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
398 |
+
retriever = database.as_retriever()
|
399 |
+
relevant_docs = retriever.get_relevant_documents(message)
|
400 |
+
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
401 |
+
return "\n".join([doc.page_content for doc in filtered_docs])
|
402 |
|
403 |
+
|
404 |
+
def vote(data: gr.LikeData):
|
405 |
+
if data.liked:
|
406 |
+
print(f"You upvoted this response: {data.value}")
|
407 |
+
else:
|
408 |
+
print(f"You downvoted this response: {data.value}")
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
css = """
|
411 |
/* Add your custom CSS here */
|
|
|
420 |
label="Select documents to query"
|
421 |
)
|
422 |
|
423 |
+
# Define the checkbox outside the demo block
|
424 |
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
425 |
+
|
426 |
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
|
427 |
|
428 |
demo = gr.ChatInterface(
|
|
|
432 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
433 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
434 |
use_web_search,
|
435 |
+
document_selector # Add the document selector to the chat interface
|
|
|
|
|
|
|
|
|
436 |
],
|
437 |
title="AI-powered Web Search and PDF Chat Assistant",
|
438 |
+
description="Chat with your PDFs or use web search to answer questions. Type 'continue' to generate more if a response seems incomplete.",
|
439 |
theme=gr.themes.Soft(
|
440 |
primary_hue="orange",
|
441 |
secondary_hue="amber",
|
|
|
467 |
# Add file upload functionality
|
468 |
with demo:
|
469 |
gr.Markdown("## Upload PDF Documents")
|
|
|
470 |
with gr.Row():
|
471 |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
472 |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
473 |
+
update_button = gr.Button("Upload Document")
|
474 |
|
475 |
update_output = gr.Textbox(label="Update Status")
|
476 |
|
477 |
# Update both the output text and the document selector
|
478 |
+
update_button.click(update_vectors,
|
479 |
+
inputs=[file_input, parser_dropdown],
|
480 |
+
outputs=[update_output, document_selector])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
481 |
|
482 |
gr.Markdown(
|
483 |
"""
|
|
|
488 |
4. Ask questions in the chat interface.
|
489 |
5. Toggle "Use Web Search" to switch between PDF chat and web search.
|
490 |
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
491 |
+
7. Use the provided examples or ask your own questions.
|
492 |
+
8. If a response seems incomplete, type 'continue' to generate more.
|
493 |
"""
|
494 |
)
|
495 |
|