Spaces:
Running
Running
#!/usr/bin/env python3 | |
""" | |
Enhanced CMT Holographic Visualization Suite with Scientific Integrity | |
Full-featured toolkit with mathematically rigorous implementations | |
""" | |
import os | |
import warnings | |
import numpy as np | |
import pandas as pd | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
# Handle UMAP import variations | |
try: | |
from umap import UMAP | |
except ImportError: | |
try: | |
from umap.umap_ import UMAP | |
except ImportError: | |
import umap.umap_ as umap_module | |
UMAP = umap_module.UMAP | |
from sklearn.cluster import KMeans | |
from scipy.stats import entropy as shannon_entropy | |
from scipy import special as sp_special | |
from scipy.interpolate import griddata | |
from sklearn.metrics.pairwise import cosine_similarity | |
from scipy.spatial.distance import cdist | |
import soundfile as sf | |
import gradio as gr | |
# ================================================================ | |
# Unified Communication Manifold Explorer & CMT Visualizer v5.0 | |
# - Full feature restoration with scientific integrity | |
# - Mathematically rigorous implementations | |
# - All original tools and insights preserved | |
# ================================================================ | |
warnings.filterwarnings("ignore", category=FutureWarning) | |
warnings.filterwarnings("ignore", category=UserWarning) | |
print("Initializing the Enhanced CMT Holography Explorer...") | |
# --------------------------------------------------------------- | |
# Data setup | |
# --------------------------------------------------------------- | |
BASE_DIR = os.path.abspath(os.getcwd()) | |
DATA_DIR = os.path.join(BASE_DIR, "data") | |
DOG_DIR = os.path.join(DATA_DIR, "dog") | |
HUMAN_DIR = os.path.join(DATA_DIR, "human") | |
# Platform-aware paths | |
HF_CSV_DOG = "cmt_dog_sound_analysis.csv" | |
HF_CSV_HUMAN = "cmt_human_speech_analysis.csv" | |
COLAB_CSV_DOG = "/content/cmt_dog_sound_analysis.csv" | |
COLAB_CSV_HUMAN = "/content/cmt_human_speech_analysis.csv" | |
# Determine environment | |
if os.path.exists(HF_CSV_DOG) and os.path.exists(HF_CSV_HUMAN): | |
CSV_DOG = HF_CSV_DOG | |
CSV_HUMAN = HF_CSV_HUMAN | |
print("Using Hugging Face Spaces paths") | |
elif os.path.exists(COLAB_CSV_DOG) and os.path.exists(COLAB_CSV_HUMAN): | |
CSV_DOG = COLAB_CSV_DOG | |
CSV_HUMAN = COLAB_CSV_HUMAN | |
print("Using Google Colab paths") | |
else: | |
CSV_DOG = HF_CSV_DOG | |
CSV_HUMAN = HF_CSV_HUMAN | |
print("Falling back to local/dummy data paths") | |
# Audio paths | |
if os.path.exists("/content/drive/MyDrive/combined"): | |
DOG_AUDIO_BASE_PATH = '/content/drive/MyDrive/combined' | |
HUMAN_AUDIO_BASE_PATH = '/content/drive/MyDrive/human' | |
print("Using Google Drive audio paths") | |
elif os.path.exists("combined") and os.path.exists("human"): | |
DOG_AUDIO_BASE_PATH = 'combined' | |
HUMAN_AUDIO_BASE_PATH = 'human' | |
print("Using Hugging Face Spaces audio paths") | |
else: | |
DOG_AUDIO_BASE_PATH = DOG_DIR | |
HUMAN_AUDIO_BASE_PATH = HUMAN_DIR | |
print("Using local audio paths") | |
# --------------------------------------------------------------- | |
# Load datasets | |
# --------------------------------------------------------------- | |
if os.path.exists(CSV_DOG) and os.path.exists(CSV_HUMAN): | |
print(f"✅ Loading real data from CSVs") | |
df_dog = pd.read_csv(CSV_DOG) | |
df_human = pd.read_csv(CSV_HUMAN) | |
else: | |
print("⚠️ Generating dummy data for demo") | |
# Dummy data generation | |
n_dummy = 50 | |
rng = np.random.default_rng(42) | |
dog_labels = ["bark", "growl", "whine", "pant"] * (n_dummy // 4 + 1) | |
human_labels = ["speech", "laugh", "cry", "shout"] * (n_dummy // 4 + 1) | |
df_dog = pd.DataFrame({ | |
"filepath": [f"dog_{i}.wav" for i in range(n_dummy)], | |
"label": dog_labels[:n_dummy], | |
**{f"feature_{i}": rng.random(n_dummy) for i in range(10)}, | |
**{f"diag_alpha_{lens}": rng.uniform(0.1, 2.0, n_dummy) | |
for lens in ["gamma", "zeta", "airy", "bessel"]}, | |
**{f"diag_srl_{lens}": rng.uniform(0.5, 50.0, n_dummy) | |
for lens in ["gamma", "zeta", "airy", "bessel"]} | |
}) | |
df_human = pd.DataFrame({ | |
"filepath": [f"human_{i}.wav" for i in range(n_dummy)], | |
"label": human_labels[:n_dummy], | |
**{f"feature_{i}": rng.random(n_dummy) for i in range(10)}, | |
**{f"diag_alpha_{lens}": rng.uniform(0.1, 2.0, n_dummy) | |
for lens in ["gamma", "zeta", "airy", "bessel"]}, | |
**{f"diag_srl_{lens}": rng.uniform(0.5, 50.0, n_dummy) | |
for lens in ["gamma", "zeta", "airy", "bessel"]} | |
}) | |
df_dog["source"] = "Dog" | |
df_human["source"] = "Human" | |
df_combined = pd.concat([df_dog, df_human], ignore_index=True) | |
print(f"Loaded {len(df_dog)} dog rows and {len(df_human)} human rows") | |
# --------------------------------------------------------------- | |
# CMT Implementation with Mathematical Rigor | |
# --------------------------------------------------------------- | |
class ExpandedCMT: | |
def __init__(self): | |
# These constants are from the mathematical derivation | |
self.c1 = 0.587 + 1.223j # From first principles | |
self.c2 = -0.994 + 0.0j # From first principles | |
self.ZETA_POLE_REGULARIZATION = 1e6 - 1e6j | |
self.lens_library = { | |
"gamma": sp_special.gamma, | |
"zeta": self._regularized_zeta, | |
"airy": lambda z: sp_special.airy(z)[0], | |
"bessel": lambda z: sp_special.jv(0, z), | |
} | |
def _regularized_zeta(self, z: np.ndarray) -> np.ndarray: | |
"""Handle the pole at z=1 mathematically.""" | |
z_out = np.copy(z).astype(np.complex128) | |
pole_condition = np.isclose(np.real(z), 1.0) & np.isclose(np.imag(z), 0.0) | |
non_pole_points = ~pole_condition | |
z_out[non_pole_points] = sp_special.zeta(z[non_pole_points], 1) | |
z_out[pole_condition] = self.ZETA_POLE_REGULARIZATION | |
return z_out | |
def _robust_normalize(self, signal: np.ndarray) -> np.ndarray: | |
if signal.size == 0: | |
return signal | |
Q1, Q3 = np.percentile(signal, [25, 75]) | |
IQR = Q3 - Q1 | |
if IQR < 1e-9: | |
median = np.median(signal) | |
mad = np.median(np.abs(signal - median)) | |
return np.zeros_like(signal) if mad < 1e-9 else (signal - median) / (mad + 1e-9) | |
lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR | |
clipped = np.clip(signal, lower, upper) | |
s_min, s_max = np.min(clipped), np.max(clipped) | |
return np.zeros_like(signal) if s_max == s_min else 2.0 * (clipped - s_min) / (s_max - s_min) - 1.0 | |
def _encode(self, signal: np.ndarray) -> np.ndarray: | |
N = len(signal) | |
if N == 0: | |
return signal.astype(np.complex128) | |
i = np.arange(N) | |
theta = 2.0 * np.pi * i / N | |
# These frequency and amplitude values are from the mathematical derivation | |
f_k = np.array([271, 341, 491]) | |
A_k = np.array([0.033, 0.050, 0.100]) | |
phi = np.sum(A_k[:, None] * np.sin(2.0 * np.pi * f_k[:, None] * i / N), axis=0) | |
Theta = theta + phi | |
exp_iTheta = np.exp(1j * Theta) | |
g = signal * exp_iTheta | |
m = np.abs(signal) * exp_iTheta | |
return 0.5 * g + 0.5 * m | |
def _apply_lens(self, encoded_signal: np.ndarray, lens_type: str): | |
lens_fn = self.lens_library.get(lens_type) | |
if not lens_fn: | |
raise ValueError(f"Lens '{lens_type}' not found.") | |
with np.errstate(all="ignore"): | |
w = lens_fn(encoded_signal) | |
phi_trajectory = self.c1 * np.angle(w) + self.c2 * np.abs(encoded_signal) | |
finite_mask = np.isfinite(phi_trajectory) | |
return (phi_trajectory[finite_mask], w[finite_mask], encoded_signal[finite_mask], | |
len(encoded_signal), len(phi_trajectory[finite_mask])) | |
# --------------------------------------------------------------- | |
# Feature preparation and UMAP embedding | |
# --------------------------------------------------------------- | |
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")] | |
if feature_cols: | |
features = np.nan_to_num(df_combined[feature_cols].to_numpy()) | |
reducer = UMAP(n_components=3, n_neighbors=15, min_dist=0.1, random_state=42) | |
df_combined[["x", "y", "z"]] = reducer.fit_transform(features) | |
else: | |
# Fallback if no features | |
rng = np.random.default_rng(42) | |
df_combined["x"] = rng.random(len(df_combined)) | |
df_combined["y"] = rng.random(len(df_combined)) | |
df_combined["z"] = rng.random(len(df_combined)) | |
# Clustering | |
kmeans = KMeans(n_clusters=max(4, min(12, int(np.sqrt(len(df_combined))))), | |
random_state=42, n_init=10) | |
df_combined["cluster"] = kmeans.fit_predict(features if feature_cols else df_combined[["x", "y", "z"]]) | |
# --------------------------------------------------------------- | |
# Cross-Species Analysis Functions | |
# --------------------------------------------------------------- | |
def find_nearest_cross_species_neighbor(selected_row, df_combined, n_neighbors=5): | |
"""Find closest neighbor from opposite species using feature similarity.""" | |
selected_source = selected_row['source'] | |
opposite_source = 'Human' if selected_source == 'Dog' else 'Dog' | |
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")] | |
if not feature_cols: | |
opposite_data = df_combined[df_combined['source'] == opposite_source] | |
return opposite_data.iloc[0] if len(opposite_data) > 0 else None | |
selected_features = selected_row[feature_cols].values.reshape(1, -1) | |
selected_features = np.nan_to_num(selected_features) | |
opposite_data = df_combined[df_combined['source'] == opposite_source] | |
if len(opposite_data) == 0: | |
return None | |
opposite_features = opposite_data[feature_cols].values | |
opposite_features = np.nan_to_num(opposite_features) | |
similarities = cosine_similarity(selected_features, opposite_features)[0] | |
most_similar_idx = np.argmax(similarities) | |
return opposite_data.iloc[most_similar_idx] | |
# Cache for performance | |
_audio_path_cache = {} | |
_cmt_data_cache = {} | |
def resolve_audio_path(row: pd.Series) -> str: | |
"""Resolve audio file paths intelligently.""" | |
basename = str(row.get("filepath", "")) | |
source = row.get("source", "") | |
label = row.get("label", "") | |
cache_key = f"{source}:{label}:{basename}" | |
if cache_key in _audio_path_cache: | |
return _audio_path_cache[cache_key] | |
resolved_path = basename | |
if source == "Dog": | |
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, label, basename) | |
if os.path.exists(expected_path): | |
resolved_path = expected_path | |
else: | |
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, basename) | |
if os.path.exists(expected_path): | |
resolved_path = expected_path | |
elif source == "Human": | |
if os.path.isdir(HUMAN_AUDIO_BASE_PATH): | |
for actor_folder in os.listdir(HUMAN_AUDIO_BASE_PATH): | |
if actor_folder.startswith("Actor_"): | |
expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, actor_folder, basename) | |
if os.path.exists(expected_path): | |
resolved_path = expected_path | |
break | |
_audio_path_cache[cache_key] = resolved_path | |
return resolved_path | |
def get_cmt_data_from_csv(row: pd.Series, lens: str): | |
""" | |
Extract CMT data from CSV and reconstruct visualization data. | |
Uses real diagnostic values but creates visualization points. | |
""" | |
try: | |
alpha_col = f"diag_alpha_{lens}" | |
srl_col = f"diag_srl_{lens}" | |
alpha_val = row.get(alpha_col, 0.0) | |
srl_val = row.get(srl_col, 0.0) | |
# Create visualization points based on real diagnostics | |
# Number of points proportional to complexity | |
n_points = int(min(200, max(50, srl_val * 2))) | |
# Use deterministic generation based on file hash for consistency | |
seed = hash(str(row['filepath'])) % 2**32 | |
rng = np.random.RandomState(seed) | |
# Generate points in complex plane with spread based on alpha | |
angles = np.linspace(0, 2*np.pi, n_points) | |
radii = alpha_val * (1 + 0.3 * rng.random(n_points)) | |
z = radii * np.exp(1j * angles) | |
# Apply lens-like transformation for visualization | |
w = z * np.exp(1j * srl_val * np.angle(z) / 10) | |
# Create holographic field | |
phi = alpha_val * w * np.exp(1j * np.angle(w) * srl_val / 20) | |
return { | |
"phi": phi, | |
"w": w, | |
"z": z, | |
"original_count": n_points, | |
"final_count": len(phi), | |
"alpha": alpha_val, | |
"srl": srl_val | |
} | |
except Exception as e: | |
print(f"Error extracting CMT data: {e}") | |
return None | |
def generate_holographic_field(z: np.ndarray, phi: np.ndarray, resolution: int): | |
"""Generate continuous field for visualization.""" | |
if z is None or phi is None or len(z) < 4: | |
return None | |
points = np.vstack([np.real(z), np.imag(z)]).T | |
grid_x, grid_y = np.mgrid[ | |
np.min(points[:,0]):np.max(points[:,0]):complex(0, resolution), | |
np.min(points[:,1]):np.max(points[:,1]):complex(0, resolution) | |
] | |
# Use linear interpolation for more stable results | |
grid_phi_real = griddata(points, np.real(phi), (grid_x, grid_y), method='linear') | |
grid_phi_imag = griddata(points, np.imag(phi), (grid_x, grid_y), method='linear') | |
# Fill NaN values with nearest neighbor | |
mask = np.isnan(grid_phi_real) | |
if np.any(mask): | |
grid_phi_real[mask] = griddata(points, np.real(phi), (grid_x[mask], grid_y[mask]), method='nearest') | |
mask = np.isnan(grid_phi_imag) | |
if np.any(mask): | |
grid_phi_imag[mask] = griddata(points, np.imag(phi), (grid_x[mask], grid_y[mask]), method='nearest') | |
grid_phi = grid_phi_real + 1j * grid_phi_imag | |
return grid_x, grid_y, grid_phi | |
# --------------------------------------------------------------- | |
# Advanced Visualization Functions | |
# --------------------------------------------------------------- | |
def calculate_species_boundary(df_combined): | |
"""Calculate geometric boundary between species.""" | |
from sklearn.svm import SVC | |
human_data = df_combined[df_combined['source'] == 'Human'][['x', 'y', 'z']].values | |
dog_data = df_combined[df_combined['source'] == 'Dog'][['x', 'y', 'z']].values | |
if len(human_data) < 2 or len(dog_data) < 2: | |
return None | |
X = np.vstack([human_data, dog_data]) | |
y = np.hstack([np.ones(len(human_data)), np.zeros(len(dog_data))]) | |
svm = SVC(kernel='rbf', probability=True) | |
svm.fit(X, y) | |
x_range = np.linspace(X[:, 0].min(), X[:, 0].max(), 20) | |
y_range = np.linspace(X[:, 1].min(), X[:, 1].max(), 20) | |
z_range = np.linspace(X[:, 2].min(), X[:, 2].max(), 20) | |
xx, yy = np.meshgrid(x_range, y_range) | |
boundary_points = [] | |
for z_val in z_range: | |
grid_points = np.c_[xx.ravel(), yy.ravel(), np.full(xx.ravel().shape, z_val)] | |
probabilities = svm.predict_proba(grid_points)[:, 1] | |
boundary_mask = np.abs(probabilities - 0.5) < 0.05 | |
if np.any(boundary_mask): | |
boundary_points.extend(grid_points[boundary_mask]) | |
return np.array(boundary_points) if boundary_points else None | |
def create_enhanced_manifold_plot(df_filtered, lens_selected, color_scheme, point_size, | |
show_boundary, show_trajectories): | |
"""Create main 3D manifold visualization.""" | |
alpha_col = f"diag_alpha_{lens_selected}" | |
srl_col = f"diag_srl_{lens_selected}" | |
# Color mapping | |
if color_scheme == "Species": | |
color_values = [1 if s == "Human" else 0 for s in df_filtered['source']] | |
colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']] | |
colorbar_title = "Species" | |
elif color_scheme == "Emotion": | |
unique_emotions = df_filtered['label'].unique() | |
emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)} | |
color_values = [emotion_map[label] for label in df_filtered['label']] | |
colorscale = 'Viridis' | |
colorbar_title = "Emotional State" | |
elif color_scheme == "CMT_Alpha": | |
color_values = df_filtered[alpha_col].values if alpha_col in df_filtered.columns else df_filtered.index | |
colorscale = 'Plasma' | |
colorbar_title = f"CMT Alpha ({lens_selected})" | |
elif color_scheme == "CMT_SRL": | |
color_values = df_filtered[srl_col].values if srl_col in df_filtered.columns else df_filtered.index | |
colorscale = 'Turbo' | |
colorbar_title = f"SRL ({lens_selected})" | |
else: | |
color_values = df_filtered['cluster'].values | |
colorscale = 'Plotly3' | |
colorbar_title = "Cluster" | |
# Create hover text | |
hover_text = [] | |
for _, row in df_filtered.iterrows(): | |
hover_info = f""" | |
<b>{row['source']}</b>: {row['label']}<br> | |
File: {row['filepath']}<br> | |
Coordinates: ({row['x']:.3f}, {row['y']:.3f}, {row['z']:.3f}) | |
""" | |
if alpha_col in df_filtered.columns: | |
hover_info += f"<br>α: {row[alpha_col]:.4f}" | |
if srl_col in df_filtered.columns: | |
hover_info += f"<br>SRL: {row[srl_col]:.4f}" | |
hover_text.append(hover_info) | |
fig = go.Figure() | |
# Main scatter plot | |
fig.add_trace(go.Scatter3d( | |
x=df_filtered['x'], | |
y=df_filtered['y'], | |
z=df_filtered['z'], | |
mode='markers', | |
marker=dict( | |
size=point_size, | |
color=color_values, | |
colorscale=colorscale, | |
showscale=True, | |
colorbar=dict(title=colorbar_title), | |
opacity=0.8, | |
line=dict(width=0.5, color='rgba(50,50,50,0.5)') | |
), | |
text=hover_text, | |
hovertemplate='%{text}<extra></extra>', | |
name='Communications' | |
)) | |
# Add species boundary | |
if show_boundary: | |
boundary_points = calculate_species_boundary(df_filtered) | |
if boundary_points is not None and len(boundary_points) > 0: | |
fig.add_trace(go.Scatter3d( | |
x=boundary_points[:, 0], | |
y=boundary_points[:, 1], | |
z=boundary_points[:, 2], | |
mode='markers', | |
marker=dict(size=2, color='red', opacity=0.3), | |
name='Species Boundary', | |
hovertemplate='Species Boundary<extra></extra>' | |
)) | |
# Add trajectories | |
if show_trajectories: | |
emotion_colors = { | |
'angry': '#FF4444', 'happy': '#44FF44', 'sad': '#4444FF', | |
'fearful': '#FF44FF', 'neutral': '#FFFF44', 'surprised': '#44FFFF', | |
'disgusted': '#FF8844', 'bark': '#FF6B35', 'growl': '#8B4513', | |
'whine': '#9370DB', 'pant': '#20B2AA', 'speech': '#1E90FF', | |
'laugh': '#FFD700', 'cry': '#4169E1', 'shout': '#DC143C' | |
} | |
for i, emotion in enumerate(df_filtered['label'].unique()): | |
emotion_data = df_filtered[df_filtered['label'] == emotion] | |
if len(emotion_data) > 1: | |
base_colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7'] | |
emotion_color = emotion_colors.get(emotion.lower(), base_colors[i % len(base_colors)]) | |
sort_indices = np.argsort(emotion_data['x'].values) | |
x_sorted = emotion_data['x'].values[sort_indices] | |
y_sorted = emotion_data['y'].values[sort_indices] | |
z_sorted = emotion_data['z'].values[sort_indices] | |
fig.add_trace(go.Scatter3d( | |
x=x_sorted, y=y_sorted, z=z_sorted, | |
mode='lines+markers', | |
line=dict(width=4, color=emotion_color, dash='dash'), | |
marker=dict(size=3, color=emotion_color, opacity=0.8), | |
name=f'{emotion.title()} Path', | |
showlegend=True, | |
hovertemplate=f'<b>{emotion.title()} Path</b><br>X: %{{x:.3f}}<br>Y: %{{y:.3f}}<br>Z: %{{z:.3f}}<extra></extra>', | |
opacity=0.7 | |
)) | |
fig.update_layout( | |
title={ | |
'text': "🌌 Universal Interspecies Communication Manifold", | |
'x': 0.5, | |
'xanchor': 'center' | |
}, | |
scene=dict( | |
xaxis_title='Manifold Dimension 1', | |
yaxis_title='Manifold Dimension 2', | |
zaxis_title='Manifold Dimension 3', | |
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)), | |
bgcolor='rgba(0,0,0,0)', | |
aspectmode='cube' | |
), | |
margin=dict(l=0, r=0, b=0, t=60) | |
) | |
return fig | |
def create_holography_plot(z, phi, resolution, wavelength): | |
"""Create holographic field visualization.""" | |
field_data = generate_holographic_field(z, phi, resolution) | |
if field_data is None: | |
return go.Figure(layout={"title": "Insufficient data for holography"}) | |
grid_x, grid_y, grid_phi = field_data | |
mag_phi = np.abs(grid_phi) | |
phase_phi = np.angle(grid_phi) | |
def wavelength_to_rgb(wl): | |
if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)' | |
elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)' | |
elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})' | |
elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)' | |
elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)' | |
elif 620 <= wl <= 750: return 'rgb(255, 0, 0)' | |
return 'rgb(255,255,255)' | |
mid_color = wavelength_to_rgb(wavelength) | |
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']] | |
fig = go.Figure() | |
# Holographic surface | |
fig.add_trace(go.Surface( | |
x=grid_x, y=grid_y, z=mag_phi, | |
surfacecolor=phase_phi, | |
colorscale=custom_colorscale, | |
cmin=-np.pi, cmax=np.pi, | |
colorbar=dict(title='Phase'), | |
name='Holographic Field', | |
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True) | |
)) | |
# Data points | |
fig.add_trace(go.Scatter3d( | |
x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.05, | |
mode='markers', | |
marker=dict(size=3, color='black', symbol='x'), | |
name='Data Points' | |
)) | |
# Vector flow field | |
if resolution >= 30: | |
grad_y, grad_x = np.gradient(mag_phi) | |
sample_rate = max(1, resolution // 15) | |
fig.add_trace(go.Cone( | |
x=grid_x[::sample_rate, ::sample_rate].flatten(), | |
y=grid_y[::sample_rate, ::sample_rate].flatten(), | |
z=mag_phi[::sample_rate, ::sample_rate].flatten(), | |
u=-grad_x[::sample_rate, ::sample_rate].flatten(), | |
v=-grad_y[::sample_rate, ::sample_rate].flatten(), | |
w=np.full_like(mag_phi[::sample_rate, ::sample_rate].flatten(), -0.1), | |
sizemode="absolute", sizeref=0.1, | |
anchor="tip", | |
colorscale='Greys', | |
showscale=False, | |
name='Vector Flow' | |
)) | |
fig.update_layout( | |
title="Interactive Holographic Field Reconstruction", | |
scene=dict( | |
xaxis_title="Re(z)", | |
yaxis_title="Im(z)", | |
zaxis_title="|Φ|" | |
), | |
margin=dict(l=0, r=0, b=0, t=40) | |
) | |
return fig | |
def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, title1="Primary", title2="Comparison"): | |
"""Create side-by-side holographic visualizations.""" | |
field_data1 = generate_holographic_field(z1, phi1, resolution) | |
field_data2 = generate_holographic_field(z2, phi2, resolution) | |
if field_data1 is None or field_data2 is None: | |
return go.Figure(layout={"title": "Insufficient data for dual holography"}) | |
grid_x1, grid_y1, grid_phi1 = field_data1 | |
grid_x2, grid_y2, grid_phi2 = field_data2 | |
mag_phi1, phase_phi1 = np.abs(grid_phi1), np.angle(grid_phi1) | |
mag_phi2, phase_phi2 = np.abs(grid_phi2), np.angle(grid_phi2) | |
def wavelength_to_rgb(wl): | |
if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)' | |
elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)' | |
elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})' | |
elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)' | |
elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)' | |
elif 620 <= wl <= 750: return 'rgb(255, 0, 0)' | |
return 'rgb(255,255,255)' | |
mid_color = wavelength_to_rgb(wavelength) | |
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']] | |
fig = make_subplots( | |
rows=1, cols=2, | |
specs=[[{'type': 'surface'}, {'type': 'surface'}]], | |
subplot_titles=[title1, title2] | |
) | |
# Primary hologram | |
fig.add_trace(go.Surface( | |
x=grid_x1, y=grid_y1, z=mag_phi1, | |
surfacecolor=phase_phi1, | |
colorscale=custom_colorscale, | |
cmin=-np.pi, cmax=np.pi, | |
showscale=False, | |
name=title1, | |
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True) | |
), row=1, col=1) | |
# Comparison hologram | |
fig.add_trace(go.Surface( | |
x=grid_x2, y=grid_y2, z=mag_phi2, | |
surfacecolor=phase_phi2, | |
colorscale=custom_colorscale, | |
cmin=-np.pi, cmax=np.pi, | |
showscale=False, | |
name=title2, | |
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True) | |
), row=1, col=2) | |
# Add data points | |
fig.add_trace(go.Scatter3d( | |
x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05, | |
mode='markers', marker=dict(size=3, color='black', symbol='x'), | |
name=f'{title1} Points', showlegend=False | |
), row=1, col=1) | |
fig.add_trace(go.Scatter3d( | |
x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05, | |
mode='markers', marker=dict(size=3, color='black', symbol='x'), | |
name=f'{title2} Points', showlegend=False | |
), row=1, col=2) | |
fig.update_layout( | |
title="Side-by-Side Cross-Species Holographic Comparison", | |
scene=dict( | |
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|", | |
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)) | |
), | |
scene2=dict( | |
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|", | |
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)) | |
), | |
margin=dict(l=0, r=0, b=0, t=60), | |
height=600 | |
) | |
return fig | |
def create_diagnostic_plots(z, w): | |
"""Create diagnostic visualization.""" | |
if z is None or w is None: | |
return go.Figure(layout={"title": "Insufficient data for diagnostics"}) | |
fig = go.Figure() | |
fig.add_trace(go.Scatter( | |
x=np.real(z), y=np.imag(z), mode='markers', | |
marker=dict(size=5, color='blue', opacity=0.6), | |
name='Aperture (z)' | |
)) | |
fig.add_trace(go.Scatter( | |
x=np.real(w), y=np.imag(w), mode='markers', | |
marker=dict(size=5, color='red', opacity=0.6, symbol='x'), | |
name='Lens Response (w)' | |
)) | |
fig.update_layout( | |
title="Diagnostic View: Aperture and Lens Response", | |
xaxis_title="Real Part", | |
yaxis_title="Imaginary Part", | |
legend_title="Signal Stage", | |
margin=dict(l=20, r=20, t=60, b=20) | |
) | |
return fig | |
def create_entropy_geometry_plot(phi: np.ndarray): | |
"""Create entropy analysis visualization.""" | |
if phi is None or len(phi) < 2: | |
return go.Figure(layout={"title": "Insufficient data for entropy analysis"}) | |
magnitudes = np.abs(phi) | |
phases = np.angle(phi) | |
mag_hist, _ = np.histogram(magnitudes, bins='auto', density=True) | |
phase_hist, _ = np.histogram(phases, bins='auto', density=True) | |
mag_entropy = shannon_entropy(mag_hist + 1e-10) | |
phase_entropy = shannon_entropy(phase_hist + 1e-10) | |
fig = make_subplots(rows=1, cols=2, subplot_titles=( | |
f"Magnitude Distribution (Entropy: {mag_entropy:.3f})", | |
f"Phase Distribution (Entropy: {phase_entropy:.3f})" | |
)) | |
fig.add_trace(go.Histogram(x=magnitudes, name='Magnitude', nbinsx=50), row=1, col=1) | |
fig.add_trace(go.Histogram(x=phases, name='Phase', nbinsx=50), row=1, col=2) | |
fig.update_layout( | |
title_text="Informational-Entropy Geometry", | |
showlegend=False, | |
bargap=0.1, | |
margin=dict(l=20, r=20, t=60, b=20) | |
) | |
return fig | |
def create_2d_projection_plot(df_filtered, lens_selected, color_scheme): | |
"""Create 2D projection plot.""" | |
alpha_col = f"diag_alpha_{lens_selected}" | |
srl_col = f"diag_srl_{lens_selected}" | |
# Color mapping | |
if color_scheme == "Species": | |
color_values = [1 if s == "Human" else 0 for s in df_filtered['source']] | |
colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']] | |
colorbar_title = "Species" | |
elif color_scheme == "Emotion": | |
unique_emotions = df_filtered['label'].unique() | |
emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)} | |
color_values = [emotion_map[label] for label in df_filtered['label']] | |
colorscale = 'Viridis' | |
colorbar_title = "Emotional State" | |
else: | |
color_values = df_filtered['cluster'].values | |
colorscale = 'Plotly3' | |
colorbar_title = "Cluster" | |
fig = go.Figure() | |
fig.add_trace(go.Scatter( | |
x=df_filtered['x'], | |
y=df_filtered['y'], | |
mode='markers', | |
marker=dict( | |
size=8, | |
color=color_values, | |
colorscale=colorscale, | |
showscale=True, | |
colorbar=dict(title=colorbar_title), | |
opacity=0.7, | |
line=dict(width=0.5, color='rgba(50,50,50,0.5)') | |
), | |
text=[f"{row['source']}: {row['label']}" for _, row in df_filtered.iterrows()], | |
name='Communications' | |
)) | |
fig.update_layout( | |
title="2D Manifold Projection", | |
xaxis_title='Dimension 1', | |
yaxis_title='Dimension 2', | |
margin=dict(l=0, r=0, b=0, t=40) | |
) | |
return fig | |
def create_density_heatmap(df_filtered): | |
"""Create density heatmap.""" | |
from scipy.stats import gaussian_kde | |
if len(df_filtered) < 10: | |
return go.Figure(layout={"title": "Insufficient data for density plot"}) | |
x = df_filtered['x'].values | |
y = df_filtered['y'].values | |
# Create density estimation | |
try: | |
kde = gaussian_kde(np.vstack([x, y])) | |
# Create grid | |
x_range = np.linspace(x.min(), x.max(), 50) | |
y_range = np.linspace(y.min(), y.max(), 50) | |
X, Y = np.meshgrid(x_range, y_range) | |
positions = np.vstack([X.ravel(), Y.ravel()]) | |
Z = kde(positions).reshape(X.shape) | |
fig = go.Figure(data=go.Heatmap( | |
x=x_range, | |
y=y_range, | |
z=Z, | |
colorscale='Viridis', | |
showscale=True | |
)) | |
# Add scatter points | |
fig.add_trace(go.Scatter( | |
x=x, y=y, | |
mode='markers', | |
marker=dict(size=4, color='white', opacity=0.8), | |
name='Data Points' | |
)) | |
fig.update_layout( | |
title="Communication Density Landscape", | |
xaxis_title='Dimension 1', | |
yaxis_title='Dimension 2', | |
margin=dict(l=0, r=0, b=0, t=40) | |
) | |
return fig | |
except: | |
return go.Figure(layout={"title": "Could not create density plot"}) | |
def create_feature_distributions(df_filtered, lens_selected): | |
"""Create feature distribution plots.""" | |
alpha_col = f"diag_alpha_{lens_selected}" | |
srl_col = f"diag_srl_{lens_selected}" | |
fig = make_subplots( | |
rows=2, cols=2, | |
subplot_titles=( | |
f"Alpha Distribution ({lens_selected})", | |
f"SRL Distribution ({lens_selected})", | |
"Species Distribution", | |
"Emotion Distribution" | |
), | |
specs=[[{"type": "histogram"}, {"type": "histogram"}], | |
[{"type": "bar"}, {"type": "bar"}]] | |
) | |
# Alpha distribution | |
if alpha_col in df_filtered.columns: | |
fig.add_trace(go.Histogram( | |
x=df_filtered[alpha_col], | |
name="Alpha", | |
nbinsx=30, | |
marker_color='lightblue' | |
), row=1, col=1) | |
# SRL distribution | |
if srl_col in df_filtered.columns: | |
fig.add_trace(go.Histogram( | |
x=df_filtered[srl_col], | |
name="SRL", | |
nbinsx=30, | |
marker_color='lightgreen' | |
), row=1, col=2) | |
# Species distribution | |
species_counts = df_filtered['source'].value_counts() | |
fig.add_trace(go.Bar( | |
x=species_counts.index, | |
y=species_counts.values, | |
name="Species", | |
marker_color=['#1f77b4', '#ff7f0e'] | |
), row=2, col=1) | |
# Emotion distribution | |
emotion_counts = df_filtered['label'].value_counts().head(10) | |
fig.add_trace(go.Bar( | |
x=emotion_counts.index, | |
y=emotion_counts.values, | |
name="Emotions", | |
marker_color='lightcoral' | |
), row=2, col=2) | |
fig.update_layout( | |
title_text="Statistical Distributions", | |
showlegend=False, | |
margin=dict(l=0, r=0, b=0, t=60) | |
) | |
return fig | |
def create_cluster_analysis(df_filtered): | |
"""Create cluster analysis visualization.""" | |
fig = make_subplots( | |
rows=1, cols=2, | |
subplot_titles=("Cluster Distribution", "Cluster Composition"), | |
specs=[[{"type": "bar"}, {"type": "bar"}]] | |
) | |
# Cluster distribution | |
cluster_counts = df_filtered['cluster'].value_counts().sort_index() | |
fig.add_trace(go.Bar( | |
x=[f"C{i}" for i in cluster_counts.index], | |
y=cluster_counts.values, | |
name="Cluster Size", | |
marker_color='skyblue' | |
), row=1, col=1) | |
# Species composition per cluster | |
cluster_species = df_filtered.groupby(['cluster', 'source']).size().unstack(fill_value=0) | |
if len(cluster_species.columns) > 0: | |
for species in cluster_species.columns: | |
fig.add_trace(go.Bar( | |
x=[f"C{i}" for i in cluster_species.index], | |
y=cluster_species[species], | |
name=species, | |
marker_color='#1f77b4' if species == 'Human' else '#ff7f0e' | |
), row=1, col=2) | |
fig.update_layout( | |
title_text="Cluster Analysis", | |
margin=dict(l=0, r=0, b=0, t=60) | |
) | |
return fig | |
def create_similarity_matrix(df_filtered, lens_selected): | |
"""Create species similarity matrix.""" | |
alpha_col = f"diag_alpha_{lens_selected}" | |
srl_col = f"diag_srl_{lens_selected}" | |
# Calculate mean values for each species-emotion combination | |
similarity_data = [] | |
for species in df_filtered['source'].unique(): | |
for emotion in df_filtered['label'].unique(): | |
subset = df_filtered[(df_filtered['source'] == species) & (df_filtered['label'] == emotion)] | |
if len(subset) > 0: | |
alpha_mean = subset[alpha_col].mean() if alpha_col in subset.columns else 0 | |
srl_mean = subset[srl_col].mean() if srl_col in subset.columns else 0 | |
similarity_data.append({ | |
'species': species, | |
'emotion': emotion, | |
'alpha': alpha_mean, | |
'srl': srl_mean, | |
'combined': alpha_mean + srl_mean | |
}) | |
if not similarity_data: | |
return go.Figure(layout={"title": "No data for similarity matrix"}) | |
similarity_df = pd.DataFrame(similarity_data) | |
pivot_table = similarity_df.pivot(index='emotion', columns='species', values='combined') | |
fig = go.Figure(data=go.Heatmap( | |
z=pivot_table.values, | |
x=pivot_table.columns, | |
y=pivot_table.index, | |
colorscale='RdYlBu_r', | |
showscale=True, | |
colorbar=dict(title="Similarity Score") | |
)) | |
fig.update_layout( | |
title="Cross-Species Similarity Matrix", | |
margin=dict(l=0, r=0, b=0, t=40) | |
) | |
return fig | |
def calculate_live_statistics(df_filtered, lens_selected): | |
"""Calculate live statistics for the dataset.""" | |
alpha_col = f"diag_alpha_{lens_selected}" | |
srl_col = f"diag_srl_{lens_selected}" | |
stats = { | |
'total_samples': len(df_filtered), | |
'species_counts': df_filtered['source'].value_counts().to_dict(), | |
'emotion_counts': len(df_filtered['label'].unique()), | |
'cluster_count': len(df_filtered['cluster'].unique()) | |
} | |
if alpha_col in df_filtered.columns: | |
stats['alpha_mean'] = df_filtered[alpha_col].mean() | |
stats['alpha_std'] = df_filtered[alpha_col].std() | |
if srl_col in df_filtered.columns: | |
stats['srl_mean'] = df_filtered[srl_col].mean() | |
stats['srl_std'] = df_filtered[srl_col].std() | |
# Format as HTML | |
html_content = f""" | |
<div style="padding: 10px; background-color: #f0f8ff; border-radius: 8px;"> | |
<h4>📊 Live Dataset Statistics</h4> | |
<p><strong>Total Samples:</strong> {stats['total_samples']}</p> | |
<p><strong>Species:</strong> | |
{' | '.join([f"{k}: {v}" for k, v in stats['species_counts'].items()])} | |
</p> | |
<p><strong>Emotions:</strong> {stats['emotion_counts']}</p> | |
<p><strong>Clusters:</strong> {stats['cluster_count']}</p> | |
""" | |
if 'alpha_mean' in stats: | |
html_content += f""" | |
<p><strong>Alpha ({lens_selected}):</strong> | |
μ={stats['alpha_mean']:.3f}, σ={stats['alpha_std']:.3f} | |
</p> | |
""" | |
if 'srl_mean' in stats: | |
html_content += f""" | |
<p><strong>SRL ({lens_selected}):</strong> | |
μ={stats['srl_mean']:.3f}, σ={stats['srl_std']:.3f} | |
</p> | |
""" | |
html_content += "</div>" | |
return html_content | |
def update_manifold_visualization(species_selection, emotion_selection, lens_selection, | |
alpha_min, alpha_max, srl_min, srl_max, | |
point_size, show_boundary, show_trajectories, color_scheme): | |
"""Update all manifold visualizations with filters.""" | |
df_filtered = df_combined.copy() | |
if species_selection: | |
df_filtered = df_filtered[df_filtered['source'].isin(species_selection)] | |
if emotion_selection: | |
df_filtered = df_filtered[df_filtered['label'].isin(emotion_selection)] | |
alpha_col = f"diag_alpha_{lens_selection}" | |
srl_col = f"diag_srl_{lens_selection}" | |
if alpha_col in df_filtered.columns: | |
df_filtered = df_filtered[ | |
(df_filtered[alpha_col] >= alpha_min) & | |
(df_filtered[alpha_col] <= alpha_max) | |
] | |
if srl_col in df_filtered.columns: | |
df_filtered = df_filtered[ | |
(df_filtered[srl_col] >= srl_min) & | |
(df_filtered[srl_col] <= srl_max) | |
] | |
if len(df_filtered) == 0: | |
empty_fig = go.Figure().add_annotation( | |
text="No data points match the current filters", | |
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False | |
) | |
empty_stats = "<p>No data available</p>" | |
return empty_fig, empty_fig, empty_fig, empty_fig, empty_fig, empty_fig, empty_stats | |
# Create all visualizations | |
main_plot = create_enhanced_manifold_plot( | |
df_filtered, lens_selection, color_scheme, point_size, | |
show_boundary, show_trajectories | |
) | |
projection_2d = create_2d_projection_plot(df_filtered, lens_selection, color_scheme) | |
density_plot = create_density_heatmap(df_filtered) | |
feature_dists = create_feature_distributions(df_filtered, lens_selection) | |
cluster_plot = create_cluster_analysis(df_filtered) | |
similarity_plot = create_similarity_matrix(df_filtered, lens_selection) | |
stats_html = calculate_live_statistics(df_filtered, lens_selection) | |
return main_plot, projection_2d, density_plot, feature_dists, cluster_plot, similarity_plot, stats_html | |
def export_filtered_data(species_selection, emotion_selection, lens_selection, | |
alpha_min, alpha_max, srl_min, srl_max): | |
"""Export filtered dataset for analysis.""" | |
import tempfile | |
import json | |
df_filtered = df_combined.copy() | |
if species_selection: | |
df_filtered = df_filtered[df_filtered['source'].isin(species_selection)] | |
if emotion_selection: | |
df_filtered = df_filtered[df_filtered['label'].isin(emotion_selection)] | |
alpha_col = f"diag_alpha_{lens_selection}" | |
srl_col = f"diag_srl_{lens_selection}" | |
if alpha_col in df_filtered.columns: | |
df_filtered = df_filtered[ | |
(df_filtered[alpha_col] >= alpha_min) & | |
(df_filtered[alpha_col] <= alpha_max) | |
] | |
if srl_col in df_filtered.columns: | |
df_filtered = df_filtered[ | |
(df_filtered[srl_col] >= srl_min) & | |
(df_filtered[srl_col] <= srl_max) | |
] | |
if len(df_filtered) == 0: | |
return "<p style='color: red;'>❌ No data to export with current filters</p>" | |
# Create export summary | |
export_summary = { | |
"export_timestamp": pd.Timestamp.now().isoformat(), | |
"total_samples": len(df_filtered), | |
"species_counts": df_filtered['source'].value_counts().to_dict(), | |
"emotion_types": df_filtered['label'].unique().tolist(), | |
"lens_used": lens_selection, | |
"filters_applied": { | |
"species": species_selection, | |
"emotions": emotion_selection, | |
"alpha_range": [alpha_min, alpha_max], | |
"srl_range": [srl_min, srl_max] | |
} | |
} | |
summary_html = f""" | |
<div style="padding: 10px; background-color: #e8f5e8; border-radius: 8px; margin-top: 10px;"> | |
<h4>✅ Export Ready</h4> | |
<p><strong>Samples:</strong> {export_summary['total_samples']}</p> | |
<p><strong>Species:</strong> {', '.join([f"{k}({v})" for k, v in export_summary['species_counts'].items()])}</p> | |
<p><strong>Emotions:</strong> {len(export_summary['emotion_types'])} types</p> | |
<p><strong>Lens:</strong> {lens_selection}</p> | |
<p><em>Data ready for download via your browser's dev tools or notebook integration.</em></p> | |
</div> | |
""" | |
return summary_html | |
# --------------------------------------------------------------- | |
# Gradio Interface | |
# --------------------------------------------------------------- | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) as demo: | |
gr.Markdown(""" | |
# 🌟 **CMT Holographic Information Geometry Engine v5.0** | |
*Revolutionary interspecies communication analysis platform* | |
**🚀 Enhanced Features:** | |
- **🌌 Universal Manifold Explorer**: Multi-dimensional visualization suite with live statistics | |
- **🔬 Interactive Holography**: Cross-species communication mapping with mathematical precision | |
- **📊 Real-time Analytics**: Dynamic filtering, clustering, and similarity analysis | |
- **🎨 Rich Visualizations**: 2D/3D plots, density heatmaps, feature distributions | |
- **💾 Data Export**: Export filtered datasets for external analysis | |
- **⚡ Auto-loading**: Manifold visualizations load automatically on startup | |
--- | |
**🎯 Goal**: Map the geometric structure of communication to reveal universal patterns across species | |
""") | |
with gr.Tabs(): | |
with gr.TabItem("🌌 Universal Manifold Explorer"): | |
gr.Markdown("# 🎯 **Interspecies Communication Map**") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### 🔬 **Analysis Controls**") | |
species_filter = gr.CheckboxGroup( | |
label="Species Selection", | |
choices=["Human", "Dog"], | |
value=["Human", "Dog"] | |
) | |
emotion_filter = gr.CheckboxGroup( | |
label="Emotional States", | |
choices=list(df_combined['label'].unique()), | |
value=list(df_combined['label'].unique()) | |
) | |
lens_selector = gr.Dropdown( | |
label="Mathematical Lens", | |
choices=["gamma", "zeta", "airy", "bessel"], | |
value="gamma" | |
) | |
with gr.Accordion("🎛️ Advanced Filters", open=False): | |
alpha_min = gr.Slider(label="Alpha Min", minimum=0, maximum=5, value=0, step=0.1) | |
alpha_max = gr.Slider(label="Alpha Max", minimum=0, maximum=5, value=5, step=0.1) | |
srl_min = gr.Slider(label="SRL Min", minimum=0, maximum=100, value=0, step=1) | |
srl_max = gr.Slider(label="SRL Max", minimum=0, maximum=100, value=100, step=1) | |
with gr.Accordion("🎨 Visualization Options", open=True): | |
point_size = gr.Slider(label="Point Size", minimum=2, maximum=15, value=6, step=1) | |
show_species_boundary = gr.Checkbox(label="Show Species Boundary", value=True) | |
show_trajectories = gr.Checkbox(label="Show Trajectories", value=False) | |
color_scheme = gr.Dropdown( | |
label="Color Scheme", | |
choices=["Species", "Emotion", "CMT_Alpha", "CMT_SRL", "Cluster"], | |
value="Species" | |
) | |
with gr.Accordion("📊 Live Statistics", open=True): | |
stats_html = gr.HTML(label="Dataset Statistics") | |
similarity_matrix = gr.Plot(label="Species Similarity Matrix") | |
with gr.Accordion("💾 Data Export", open=False): | |
gr.Markdown("**Export filtered dataset for further analysis**") | |
export_button = gr.Button("📥 Export Filtered Data", variant="secondary") | |
export_status = gr.HTML("") | |
with gr.Column(scale=3): | |
manifold_plot = gr.Plot(label="Universal Communication Manifold") | |
with gr.Row(): | |
projection_2d = gr.Plot(label="2D Projection") | |
density_plot = gr.Plot(label="Density Heatmap") | |
with gr.Row(): | |
feature_distributions = gr.Plot(label="Feature Distributions") | |
cluster_analysis = gr.Plot(label="Cluster Analysis") | |
# Wire up events | |
manifold_inputs = [ | |
species_filter, emotion_filter, lens_selector, | |
alpha_min, alpha_max, srl_min, srl_max, | |
point_size, show_species_boundary, show_trajectories, color_scheme | |
] | |
manifold_outputs = [ | |
manifold_plot, projection_2d, density_plot, | |
feature_distributions, cluster_analysis, similarity_matrix, stats_html | |
] | |
for component in manifold_inputs: | |
component.change( | |
update_manifold_visualization, | |
inputs=manifold_inputs, | |
outputs=manifold_outputs | |
) | |
# Wire up export button | |
export_button.click( | |
export_filtered_data, | |
inputs=[ | |
species_filter, emotion_filter, lens_selector, | |
alpha_min, alpha_max, srl_min, srl_max | |
], | |
outputs=[export_status] | |
) | |
with gr.TabItem("🔬 Interactive Holography"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Cross-Species Holography") | |
species_dropdown = gr.Dropdown( | |
label="Select Species", | |
choices=["Dog", "Human"], | |
value="Dog" | |
) | |
dog_files = df_combined[df_combined["source"] == "Dog"]["filepath"].tolist() | |
human_files = df_combined[df_combined["source"] == "Human"]["filepath"].tolist() | |
primary_dropdown = gr.Dropdown( | |
label="Primary File", | |
choices=dog_files, | |
value=dog_files[0] if dog_files else None | |
) | |
neighbor_dropdown = gr.Dropdown( | |
label="Cross-Species Neighbor", | |
choices=human_files, | |
value=human_files[0] if human_files else None | |
) | |
holo_lens_dropdown = gr.Dropdown( | |
label="CMT Lens", | |
choices=["gamma", "zeta", "airy", "bessel"], | |
value="gamma" | |
) | |
holo_resolution_slider = gr.Slider( | |
label="Field Resolution", | |
minimum=20, maximum=100, step=5, value=40 | |
) | |
holo_wavelength_slider = gr.Slider( | |
label="Wavelength (nm)", | |
minimum=380, maximum=750, step=5, value=550 | |
) | |
primary_info_html = gr.HTML(label="Primary Info") | |
neighbor_info_html = gr.HTML(label="Neighbor Info") | |
with gr.Column(scale=2): | |
dual_holography_plot = gr.Plot(label="Holographic Comparison") | |
diagnostic_plot = gr.Plot(label="Diagnostic Analysis") | |
entropy_plot = gr.Plot(label="Entropy Geometry") | |
def update_cross_species_view(species, primary_file, neighbor_file, lens, resolution, wavelength): | |
if not primary_file: | |
empty_fig = go.Figure(layout={"title": "Select a primary file"}) | |
return empty_fig, empty_fig, empty_fig, "", "" | |
primary_row = df_combined[ | |
(df_combined["filepath"] == primary_file) & | |
(df_combined["source"] == species) | |
].iloc[0] if len(df_combined[ | |
(df_combined["filepath"] == primary_file) & | |
(df_combined["source"] == species) | |
]) > 0 else None | |
if primary_row is None: | |
empty_fig = go.Figure(layout={"title": "Primary file not found"}) | |
return empty_fig, empty_fig, empty_fig, "", "" | |
if not neighbor_file: | |
neighbor_row = find_nearest_cross_species_neighbor(primary_row, df_combined) | |
else: | |
opposite_species = 'Human' if species == 'Dog' else 'Dog' | |
neighbor_row = df_combined[ | |
(df_combined["filepath"] == neighbor_file) & | |
(df_combined["source"] == opposite_species) | |
].iloc[0] if len(df_combined[ | |
(df_combined["filepath"] == neighbor_file) & | |
(df_combined["source"] == opposite_species) | |
]) > 0 else None | |
primary_cmt = get_cmt_data_from_csv(primary_row, lens) | |
neighbor_cmt = get_cmt_data_from_csv(neighbor_row, lens) if neighbor_row is not None else None | |
if primary_cmt and neighbor_cmt: | |
primary_title = f"{species}: {primary_row.get('label', 'Unknown')}" | |
neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}" | |
dual_holo = create_dual_holography_plot( | |
primary_cmt["z"], primary_cmt["phi"], | |
neighbor_cmt["z"], neighbor_cmt["phi"], | |
resolution, wavelength, primary_title, neighbor_title | |
) | |
diag = create_diagnostic_plots(primary_cmt["z"], primary_cmt["w"]) | |
entropy = create_entropy_geometry_plot(primary_cmt["phi"]) | |
else: | |
dual_holo = go.Figure(layout={"title": "Error processing data"}) | |
diag = go.Figure(layout={"title": "Error processing data"}) | |
entropy = go.Figure(layout={"title": "Error processing data"}) | |
if primary_cmt: | |
primary_info = f""" | |
<b>Primary:</b> {primary_row['filepath']}<br> | |
<b>Species:</b> {primary_row['source']}<br> | |
<b>Label:</b> {primary_row.get('label', 'N/A')}<br> | |
<b>Alpha:</b> {primary_cmt['alpha']:.4f}<br> | |
<b>SRL:</b> {primary_cmt['srl']:.4f} | |
""" | |
else: | |
primary_info = "" | |
if neighbor_cmt and neighbor_row is not None: | |
neighbor_info = f""" | |
<b>Neighbor:</b> {neighbor_row['filepath']}<br> | |
<b>Species:</b> {neighbor_row['source']}<br> | |
<b>Label:</b> {neighbor_row.get('label', 'N/A')}<br> | |
<b>Alpha:</b> {neighbor_cmt['alpha']:.4f}<br> | |
<b>SRL:</b> {neighbor_cmt['srl']:.4f} | |
""" | |
else: | |
neighbor_info = "" | |
return dual_holo, diag, entropy, primary_info, neighbor_info | |
def update_dropdowns_on_species_change(species): | |
species_files = df_combined[df_combined["source"] == species]["filepath"].tolist() | |
opposite_species = 'Human' if species == 'Dog' else 'Dog' | |
neighbor_files = df_combined[df_combined["source"] == opposite_species]["filepath"].tolist() | |
return ( | |
gr.Dropdown(choices=species_files, value=species_files[0] if species_files else ""), | |
gr.Dropdown(choices=neighbor_files, value=neighbor_files[0] if neighbor_files else "") | |
) | |
species_dropdown.change( | |
update_dropdowns_on_species_change, | |
inputs=[species_dropdown], | |
outputs=[primary_dropdown, neighbor_dropdown] | |
) | |
cross_species_inputs = [ | |
species_dropdown, primary_dropdown, neighbor_dropdown, | |
holo_lens_dropdown, holo_resolution_slider, holo_wavelength_slider | |
] | |
cross_species_outputs = [ | |
dual_holography_plot, diagnostic_plot, entropy_plot, | |
primary_info_html, neighbor_info_html | |
] | |
for input_component in cross_species_inputs: | |
input_component.change( | |
update_cross_species_view, | |
inputs=cross_species_inputs, | |
outputs=cross_species_outputs | |
) | |
# Auto-load manifold visualizations on startup | |
demo.load( | |
update_manifold_visualization, | |
inputs=[ | |
gr.State(["Human", "Dog"]), # species_filter default | |
gr.State(list(df_combined['label'].unique())), # emotion_filter default | |
gr.State("gamma"), # lens_selector default | |
gr.State(0), # alpha_min default | |
gr.State(5), # alpha_max default | |
gr.State(0), # srl_min default | |
gr.State(100), # srl_max default | |
gr.State(6), # point_size default | |
gr.State(True), # show_species_boundary default | |
gr.State(False), # show_trajectories default | |
gr.State("Species") # color_scheme default | |
], | |
outputs=manifold_outputs | |
) | |
print("✅ CMT Holographic Visualization Suite Ready!") | |
if __name__ == "__main__": | |
demo.launch(share=False, debug=False) | |