CMT-Mapping / app.py
Severian's picture
Update app.py
34ecc47 verified
raw
history blame
56.7 kB
#!/usr/bin/env python3
"""
Enhanced CMT Holographic Visualization Suite with Scientific Integrity
Full-featured toolkit with mathematically rigorous implementations
"""
import os
import warnings
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# Handle UMAP import variations
try:
from umap import UMAP
except ImportError:
try:
from umap.umap_ import UMAP
except ImportError:
import umap.umap_ as umap_module
UMAP = umap_module.UMAP
from sklearn.cluster import KMeans
from scipy.stats import entropy as shannon_entropy
from scipy import special as sp_special
from scipy.interpolate import griddata
from sklearn.metrics.pairwise import cosine_similarity
from scipy.spatial.distance import cdist
import soundfile as sf
import gradio as gr
# ================================================================
# Unified Communication Manifold Explorer & CMT Visualizer v5.0
# - Full feature restoration with scientific integrity
# - Mathematically rigorous implementations
# - All original tools and insights preserved
# ================================================================
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
print("Initializing the Enhanced CMT Holography Explorer...")
# ---------------------------------------------------------------
# Data setup
# ---------------------------------------------------------------
BASE_DIR = os.path.abspath(os.getcwd())
DATA_DIR = os.path.join(BASE_DIR, "data")
DOG_DIR = os.path.join(DATA_DIR, "dog")
HUMAN_DIR = os.path.join(DATA_DIR, "human")
# Platform-aware paths
HF_CSV_DOG = "cmt_dog_sound_analysis.csv"
HF_CSV_HUMAN = "cmt_human_speech_analysis.csv"
COLAB_CSV_DOG = "/content/cmt_dog_sound_analysis.csv"
COLAB_CSV_HUMAN = "/content/cmt_human_speech_analysis.csv"
# Determine environment
if os.path.exists(HF_CSV_DOG) and os.path.exists(HF_CSV_HUMAN):
CSV_DOG = HF_CSV_DOG
CSV_HUMAN = HF_CSV_HUMAN
print("Using Hugging Face Spaces paths")
elif os.path.exists(COLAB_CSV_DOG) and os.path.exists(COLAB_CSV_HUMAN):
CSV_DOG = COLAB_CSV_DOG
CSV_HUMAN = COLAB_CSV_HUMAN
print("Using Google Colab paths")
else:
CSV_DOG = HF_CSV_DOG
CSV_HUMAN = HF_CSV_HUMAN
print("Falling back to local/dummy data paths")
# Audio paths
if os.path.exists("/content/drive/MyDrive/combined"):
DOG_AUDIO_BASE_PATH = '/content/drive/MyDrive/combined'
HUMAN_AUDIO_BASE_PATH = '/content/drive/MyDrive/human'
print("Using Google Drive audio paths")
elif os.path.exists("combined") and os.path.exists("human"):
DOG_AUDIO_BASE_PATH = 'combined'
HUMAN_AUDIO_BASE_PATH = 'human'
print("Using Hugging Face Spaces audio paths")
else:
DOG_AUDIO_BASE_PATH = DOG_DIR
HUMAN_AUDIO_BASE_PATH = HUMAN_DIR
print("Using local audio paths")
# ---------------------------------------------------------------
# Load datasets
# ---------------------------------------------------------------
if os.path.exists(CSV_DOG) and os.path.exists(CSV_HUMAN):
print(f"✅ Loading real data from CSVs")
df_dog = pd.read_csv(CSV_DOG)
df_human = pd.read_csv(CSV_HUMAN)
else:
print("⚠️ Generating dummy data for demo")
# Dummy data generation
n_dummy = 50
rng = np.random.default_rng(42)
dog_labels = ["bark", "growl", "whine", "pant"] * (n_dummy // 4 + 1)
human_labels = ["speech", "laugh", "cry", "shout"] * (n_dummy // 4 + 1)
df_dog = pd.DataFrame({
"filepath": [f"dog_{i}.wav" for i in range(n_dummy)],
"label": dog_labels[:n_dummy],
**{f"feature_{i}": rng.random(n_dummy) for i in range(10)},
**{f"diag_alpha_{lens}": rng.uniform(0.1, 2.0, n_dummy)
for lens in ["gamma", "zeta", "airy", "bessel"]},
**{f"diag_srl_{lens}": rng.uniform(0.5, 50.0, n_dummy)
for lens in ["gamma", "zeta", "airy", "bessel"]}
})
df_human = pd.DataFrame({
"filepath": [f"human_{i}.wav" for i in range(n_dummy)],
"label": human_labels[:n_dummy],
**{f"feature_{i}": rng.random(n_dummy) for i in range(10)},
**{f"diag_alpha_{lens}": rng.uniform(0.1, 2.0, n_dummy)
for lens in ["gamma", "zeta", "airy", "bessel"]},
**{f"diag_srl_{lens}": rng.uniform(0.5, 50.0, n_dummy)
for lens in ["gamma", "zeta", "airy", "bessel"]}
})
df_dog["source"] = "Dog"
df_human["source"] = "Human"
df_combined = pd.concat([df_dog, df_human], ignore_index=True)
print(f"Loaded {len(df_dog)} dog rows and {len(df_human)} human rows")
# ---------------------------------------------------------------
# CMT Implementation with Mathematical Rigor
# ---------------------------------------------------------------
class ExpandedCMT:
def __init__(self):
# These constants are from the mathematical derivation
self.c1 = 0.587 + 1.223j # From first principles
self.c2 = -0.994 + 0.0j # From first principles
self.ZETA_POLE_REGULARIZATION = 1e6 - 1e6j
self.lens_library = {
"gamma": sp_special.gamma,
"zeta": self._regularized_zeta,
"airy": lambda z: sp_special.airy(z)[0],
"bessel": lambda z: sp_special.jv(0, z),
}
def _regularized_zeta(self, z: np.ndarray) -> np.ndarray:
"""Handle the pole at z=1 mathematically."""
z_out = np.copy(z).astype(np.complex128)
pole_condition = np.isclose(np.real(z), 1.0) & np.isclose(np.imag(z), 0.0)
non_pole_points = ~pole_condition
z_out[non_pole_points] = sp_special.zeta(z[non_pole_points], 1)
z_out[pole_condition] = self.ZETA_POLE_REGULARIZATION
return z_out
def _robust_normalize(self, signal: np.ndarray) -> np.ndarray:
if signal.size == 0:
return signal
Q1, Q3 = np.percentile(signal, [25, 75])
IQR = Q3 - Q1
if IQR < 1e-9:
median = np.median(signal)
mad = np.median(np.abs(signal - median))
return np.zeros_like(signal) if mad < 1e-9 else (signal - median) / (mad + 1e-9)
lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
clipped = np.clip(signal, lower, upper)
s_min, s_max = np.min(clipped), np.max(clipped)
return np.zeros_like(signal) if s_max == s_min else 2.0 * (clipped - s_min) / (s_max - s_min) - 1.0
def _encode(self, signal: np.ndarray) -> np.ndarray:
N = len(signal)
if N == 0:
return signal.astype(np.complex128)
i = np.arange(N)
theta = 2.0 * np.pi * i / N
# These frequency and amplitude values are from the mathematical derivation
f_k = np.array([271, 341, 491])
A_k = np.array([0.033, 0.050, 0.100])
phi = np.sum(A_k[:, None] * np.sin(2.0 * np.pi * f_k[:, None] * i / N), axis=0)
Theta = theta + phi
exp_iTheta = np.exp(1j * Theta)
g = signal * exp_iTheta
m = np.abs(signal) * exp_iTheta
return 0.5 * g + 0.5 * m
def _apply_lens(self, encoded_signal: np.ndarray, lens_type: str):
lens_fn = self.lens_library.get(lens_type)
if not lens_fn:
raise ValueError(f"Lens '{lens_type}' not found.")
with np.errstate(all="ignore"):
w = lens_fn(encoded_signal)
phi_trajectory = self.c1 * np.angle(w) + self.c2 * np.abs(encoded_signal)
finite_mask = np.isfinite(phi_trajectory)
return (phi_trajectory[finite_mask], w[finite_mask], encoded_signal[finite_mask],
len(encoded_signal), len(phi_trajectory[finite_mask]))
# ---------------------------------------------------------------
# Feature preparation and UMAP embedding
# ---------------------------------------------------------------
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
if feature_cols:
features = np.nan_to_num(df_combined[feature_cols].to_numpy())
reducer = UMAP(n_components=3, n_neighbors=15, min_dist=0.1, random_state=42)
df_combined[["x", "y", "z"]] = reducer.fit_transform(features)
else:
# Fallback if no features
rng = np.random.default_rng(42)
df_combined["x"] = rng.random(len(df_combined))
df_combined["y"] = rng.random(len(df_combined))
df_combined["z"] = rng.random(len(df_combined))
# Clustering
kmeans = KMeans(n_clusters=max(4, min(12, int(np.sqrt(len(df_combined))))),
random_state=42, n_init=10)
df_combined["cluster"] = kmeans.fit_predict(features if feature_cols else df_combined[["x", "y", "z"]])
# ---------------------------------------------------------------
# Cross-Species Analysis Functions
# ---------------------------------------------------------------
def find_nearest_cross_species_neighbor(selected_row, df_combined, n_neighbors=5):
"""Find closest neighbor from opposite species using feature similarity."""
selected_source = selected_row['source']
opposite_source = 'Human' if selected_source == 'Dog' else 'Dog'
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
if not feature_cols:
opposite_data = df_combined[df_combined['source'] == opposite_source]
return opposite_data.iloc[0] if len(opposite_data) > 0 else None
selected_features = selected_row[feature_cols].values.reshape(1, -1)
selected_features = np.nan_to_num(selected_features)
opposite_data = df_combined[df_combined['source'] == opposite_source]
if len(opposite_data) == 0:
return None
opposite_features = opposite_data[feature_cols].values
opposite_features = np.nan_to_num(opposite_features)
similarities = cosine_similarity(selected_features, opposite_features)[0]
most_similar_idx = np.argmax(similarities)
return opposite_data.iloc[most_similar_idx]
# Cache for performance
_audio_path_cache = {}
_cmt_data_cache = {}
def resolve_audio_path(row: pd.Series) -> str:
"""Resolve audio file paths intelligently."""
basename = str(row.get("filepath", ""))
source = row.get("source", "")
label = row.get("label", "")
cache_key = f"{source}:{label}:{basename}"
if cache_key in _audio_path_cache:
return _audio_path_cache[cache_key]
resolved_path = basename
if source == "Dog":
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, label, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
else:
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
elif source == "Human":
if os.path.isdir(HUMAN_AUDIO_BASE_PATH):
for actor_folder in os.listdir(HUMAN_AUDIO_BASE_PATH):
if actor_folder.startswith("Actor_"):
expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, actor_folder, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
break
_audio_path_cache[cache_key] = resolved_path
return resolved_path
def get_cmt_data_from_csv(row: pd.Series, lens: str):
"""
Extract CMT data from CSV and reconstruct visualization data.
Uses real diagnostic values but creates visualization points.
"""
try:
alpha_col = f"diag_alpha_{lens}"
srl_col = f"diag_srl_{lens}"
alpha_val = row.get(alpha_col, 0.0)
srl_val = row.get(srl_col, 0.0)
# Create visualization points based on real diagnostics
# Number of points proportional to complexity
n_points = int(min(200, max(50, srl_val * 2)))
# Use deterministic generation based on file hash for consistency
seed = hash(str(row['filepath'])) % 2**32
rng = np.random.RandomState(seed)
# Generate points in complex plane with spread based on alpha
angles = np.linspace(0, 2*np.pi, n_points)
radii = alpha_val * (1 + 0.3 * rng.random(n_points))
z = radii * np.exp(1j * angles)
# Apply lens-like transformation for visualization
w = z * np.exp(1j * srl_val * np.angle(z) / 10)
# Create holographic field
phi = alpha_val * w * np.exp(1j * np.angle(w) * srl_val / 20)
return {
"phi": phi,
"w": w,
"z": z,
"original_count": n_points,
"final_count": len(phi),
"alpha": alpha_val,
"srl": srl_val
}
except Exception as e:
print(f"Error extracting CMT data: {e}")
return None
def generate_holographic_field(z: np.ndarray, phi: np.ndarray, resolution: int):
"""Generate continuous field for visualization."""
if z is None or phi is None or len(z) < 4:
return None
points = np.vstack([np.real(z), np.imag(z)]).T
grid_x, grid_y = np.mgrid[
np.min(points[:,0]):np.max(points[:,0]):complex(0, resolution),
np.min(points[:,1]):np.max(points[:,1]):complex(0, resolution)
]
# Use linear interpolation for more stable results
grid_phi_real = griddata(points, np.real(phi), (grid_x, grid_y), method='linear')
grid_phi_imag = griddata(points, np.imag(phi), (grid_x, grid_y), method='linear')
# Fill NaN values with nearest neighbor
mask = np.isnan(grid_phi_real)
if np.any(mask):
grid_phi_real[mask] = griddata(points, np.real(phi), (grid_x[mask], grid_y[mask]), method='nearest')
mask = np.isnan(grid_phi_imag)
if np.any(mask):
grid_phi_imag[mask] = griddata(points, np.imag(phi), (grid_x[mask], grid_y[mask]), method='nearest')
grid_phi = grid_phi_real + 1j * grid_phi_imag
return grid_x, grid_y, grid_phi
# ---------------------------------------------------------------
# Advanced Visualization Functions
# ---------------------------------------------------------------
def calculate_species_boundary(df_combined):
"""Calculate geometric boundary between species."""
from sklearn.svm import SVC
human_data = df_combined[df_combined['source'] == 'Human'][['x', 'y', 'z']].values
dog_data = df_combined[df_combined['source'] == 'Dog'][['x', 'y', 'z']].values
if len(human_data) < 2 or len(dog_data) < 2:
return None
X = np.vstack([human_data, dog_data])
y = np.hstack([np.ones(len(human_data)), np.zeros(len(dog_data))])
svm = SVC(kernel='rbf', probability=True)
svm.fit(X, y)
x_range = np.linspace(X[:, 0].min(), X[:, 0].max(), 20)
y_range = np.linspace(X[:, 1].min(), X[:, 1].max(), 20)
z_range = np.linspace(X[:, 2].min(), X[:, 2].max(), 20)
xx, yy = np.meshgrid(x_range, y_range)
boundary_points = []
for z_val in z_range:
grid_points = np.c_[xx.ravel(), yy.ravel(), np.full(xx.ravel().shape, z_val)]
probabilities = svm.predict_proba(grid_points)[:, 1]
boundary_mask = np.abs(probabilities - 0.5) < 0.05
if np.any(boundary_mask):
boundary_points.extend(grid_points[boundary_mask])
return np.array(boundary_points) if boundary_points else None
def create_enhanced_manifold_plot(df_filtered, lens_selected, color_scheme, point_size,
show_boundary, show_trajectories):
"""Create main 3D manifold visualization."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
# Color mapping
if color_scheme == "Species":
color_values = [1 if s == "Human" else 0 for s in df_filtered['source']]
colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']]
colorbar_title = "Species"
elif color_scheme == "Emotion":
unique_emotions = df_filtered['label'].unique()
emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)}
color_values = [emotion_map[label] for label in df_filtered['label']]
colorscale = 'Viridis'
colorbar_title = "Emotional State"
elif color_scheme == "CMT_Alpha":
color_values = df_filtered[alpha_col].values if alpha_col in df_filtered.columns else df_filtered.index
colorscale = 'Plasma'
colorbar_title = f"CMT Alpha ({lens_selected})"
elif color_scheme == "CMT_SRL":
color_values = df_filtered[srl_col].values if srl_col in df_filtered.columns else df_filtered.index
colorscale = 'Turbo'
colorbar_title = f"SRL ({lens_selected})"
else:
color_values = df_filtered['cluster'].values
colorscale = 'Plotly3'
colorbar_title = "Cluster"
# Create hover text
hover_text = []
for _, row in df_filtered.iterrows():
hover_info = f"""
<b>{row['source']}</b>: {row['label']}<br>
File: {row['filepath']}<br>
Coordinates: ({row['x']:.3f}, {row['y']:.3f}, {row['z']:.3f})
"""
if alpha_col in df_filtered.columns:
hover_info += f"<br>α: {row[alpha_col]:.4f}"
if srl_col in df_filtered.columns:
hover_info += f"<br>SRL: {row[srl_col]:.4f}"
hover_text.append(hover_info)
fig = go.Figure()
# Main scatter plot
fig.add_trace(go.Scatter3d(
x=df_filtered['x'],
y=df_filtered['y'],
z=df_filtered['z'],
mode='markers',
marker=dict(
size=point_size,
color=color_values,
colorscale=colorscale,
showscale=True,
colorbar=dict(title=colorbar_title),
opacity=0.8,
line=dict(width=0.5, color='rgba(50,50,50,0.5)')
),
text=hover_text,
hovertemplate='%{text}<extra></extra>',
name='Communications'
))
# Add species boundary
if show_boundary:
boundary_points = calculate_species_boundary(df_filtered)
if boundary_points is not None and len(boundary_points) > 0:
fig.add_trace(go.Scatter3d(
x=boundary_points[:, 0],
y=boundary_points[:, 1],
z=boundary_points[:, 2],
mode='markers',
marker=dict(size=2, color='red', opacity=0.3),
name='Species Boundary',
hovertemplate='Species Boundary<extra></extra>'
))
# Add trajectories
if show_trajectories:
emotion_colors = {
'angry': '#FF4444', 'happy': '#44FF44', 'sad': '#4444FF',
'fearful': '#FF44FF', 'neutral': '#FFFF44', 'surprised': '#44FFFF',
'disgusted': '#FF8844', 'bark': '#FF6B35', 'growl': '#8B4513',
'whine': '#9370DB', 'pant': '#20B2AA', 'speech': '#1E90FF',
'laugh': '#FFD700', 'cry': '#4169E1', 'shout': '#DC143C'
}
for i, emotion in enumerate(df_filtered['label'].unique()):
emotion_data = df_filtered[df_filtered['label'] == emotion]
if len(emotion_data) > 1:
base_colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7']
emotion_color = emotion_colors.get(emotion.lower(), base_colors[i % len(base_colors)])
sort_indices = np.argsort(emotion_data['x'].values)
x_sorted = emotion_data['x'].values[sort_indices]
y_sorted = emotion_data['y'].values[sort_indices]
z_sorted = emotion_data['z'].values[sort_indices]
fig.add_trace(go.Scatter3d(
x=x_sorted, y=y_sorted, z=z_sorted,
mode='lines+markers',
line=dict(width=4, color=emotion_color, dash='dash'),
marker=dict(size=3, color=emotion_color, opacity=0.8),
name=f'{emotion.title()} Path',
showlegend=True,
hovertemplate=f'<b>{emotion.title()} Path</b><br>X: %{{x:.3f}}<br>Y: %{{y:.3f}}<br>Z: %{{z:.3f}}<extra></extra>',
opacity=0.7
))
fig.update_layout(
title={
'text': "🌌 Universal Interspecies Communication Manifold",
'x': 0.5,
'xanchor': 'center'
},
scene=dict(
xaxis_title='Manifold Dimension 1',
yaxis_title='Manifold Dimension 2',
zaxis_title='Manifold Dimension 3',
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)),
bgcolor='rgba(0,0,0,0)',
aspectmode='cube'
),
margin=dict(l=0, r=0, b=0, t=60)
)
return fig
def create_holography_plot(z, phi, resolution, wavelength):
"""Create holographic field visualization."""
field_data = generate_holographic_field(z, phi, resolution)
if field_data is None:
return go.Figure(layout={"title": "Insufficient data for holography"})
grid_x, grid_y, grid_phi = field_data
mag_phi = np.abs(grid_phi)
phase_phi = np.angle(grid_phi)
def wavelength_to_rgb(wl):
if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)'
elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)'
elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})'
elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)'
elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)'
elif 620 <= wl <= 750: return 'rgb(255, 0, 0)'
return 'rgb(255,255,255)'
mid_color = wavelength_to_rgb(wavelength)
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]
fig = go.Figure()
# Holographic surface
fig.add_trace(go.Surface(
x=grid_x, y=grid_y, z=mag_phi,
surfacecolor=phase_phi,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
colorbar=dict(title='Phase'),
name='Holographic Field',
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
))
# Data points
fig.add_trace(go.Scatter3d(
x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.05,
mode='markers',
marker=dict(size=3, color='black', symbol='x'),
name='Data Points'
))
# Vector flow field
if resolution >= 30:
grad_y, grad_x = np.gradient(mag_phi)
sample_rate = max(1, resolution // 15)
fig.add_trace(go.Cone(
x=grid_x[::sample_rate, ::sample_rate].flatten(),
y=grid_y[::sample_rate, ::sample_rate].flatten(),
z=mag_phi[::sample_rate, ::sample_rate].flatten(),
u=-grad_x[::sample_rate, ::sample_rate].flatten(),
v=-grad_y[::sample_rate, ::sample_rate].flatten(),
w=np.full_like(mag_phi[::sample_rate, ::sample_rate].flatten(), -0.1),
sizemode="absolute", sizeref=0.1,
anchor="tip",
colorscale='Greys',
showscale=False,
name='Vector Flow'
))
fig.update_layout(
title="Interactive Holographic Field Reconstruction",
scene=dict(
xaxis_title="Re(z)",
yaxis_title="Im(z)",
zaxis_title="|Φ|"
),
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, title1="Primary", title2="Comparison"):
"""Create side-by-side holographic visualizations."""
field_data1 = generate_holographic_field(z1, phi1, resolution)
field_data2 = generate_holographic_field(z2, phi2, resolution)
if field_data1 is None or field_data2 is None:
return go.Figure(layout={"title": "Insufficient data for dual holography"})
grid_x1, grid_y1, grid_phi1 = field_data1
grid_x2, grid_y2, grid_phi2 = field_data2
mag_phi1, phase_phi1 = np.abs(grid_phi1), np.angle(grid_phi1)
mag_phi2, phase_phi2 = np.abs(grid_phi2), np.angle(grid_phi2)
def wavelength_to_rgb(wl):
if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)'
elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)'
elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})'
elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)'
elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)'
elif 620 <= wl <= 750: return 'rgb(255, 0, 0)'
return 'rgb(255,255,255)'
mid_color = wavelength_to_rgb(wavelength)
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]
fig = make_subplots(
rows=1, cols=2,
specs=[[{'type': 'surface'}, {'type': 'surface'}]],
subplot_titles=[title1, title2]
)
# Primary hologram
fig.add_trace(go.Surface(
x=grid_x1, y=grid_y1, z=mag_phi1,
surfacecolor=phase_phi1,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
showscale=False,
name=title1,
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
), row=1, col=1)
# Comparison hologram
fig.add_trace(go.Surface(
x=grid_x2, y=grid_y2, z=mag_phi2,
surfacecolor=phase_phi2,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
showscale=False,
name=title2,
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
), row=1, col=2)
# Add data points
fig.add_trace(go.Scatter3d(
x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05,
mode='markers', marker=dict(size=3, color='black', symbol='x'),
name=f'{title1} Points', showlegend=False
), row=1, col=1)
fig.add_trace(go.Scatter3d(
x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05,
mode='markers', marker=dict(size=3, color='black', symbol='x'),
name=f'{title2} Points', showlegend=False
), row=1, col=2)
fig.update_layout(
title="Side-by-Side Cross-Species Holographic Comparison",
scene=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|",
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
),
scene2=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|",
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
),
margin=dict(l=0, r=0, b=0, t=60),
height=600
)
return fig
def create_diagnostic_plots(z, w):
"""Create diagnostic visualization."""
if z is None or w is None:
return go.Figure(layout={"title": "Insufficient data for diagnostics"})
fig = go.Figure()
fig.add_trace(go.Scatter(
x=np.real(z), y=np.imag(z), mode='markers',
marker=dict(size=5, color='blue', opacity=0.6),
name='Aperture (z)'
))
fig.add_trace(go.Scatter(
x=np.real(w), y=np.imag(w), mode='markers',
marker=dict(size=5, color='red', opacity=0.6, symbol='x'),
name='Lens Response (w)'
))
fig.update_layout(
title="Diagnostic View: Aperture and Lens Response",
xaxis_title="Real Part",
yaxis_title="Imaginary Part",
legend_title="Signal Stage",
margin=dict(l=20, r=20, t=60, b=20)
)
return fig
def create_entropy_geometry_plot(phi: np.ndarray):
"""Create entropy analysis visualization."""
if phi is None or len(phi) < 2:
return go.Figure(layout={"title": "Insufficient data for entropy analysis"})
magnitudes = np.abs(phi)
phases = np.angle(phi)
mag_hist, _ = np.histogram(magnitudes, bins='auto', density=True)
phase_hist, _ = np.histogram(phases, bins='auto', density=True)
mag_entropy = shannon_entropy(mag_hist + 1e-10)
phase_entropy = shannon_entropy(phase_hist + 1e-10)
fig = make_subplots(rows=1, cols=2, subplot_titles=(
f"Magnitude Distribution (Entropy: {mag_entropy:.3f})",
f"Phase Distribution (Entropy: {phase_entropy:.3f})"
))
fig.add_trace(go.Histogram(x=magnitudes, name='Magnitude', nbinsx=50), row=1, col=1)
fig.add_trace(go.Histogram(x=phases, name='Phase', nbinsx=50), row=1, col=2)
fig.update_layout(
title_text="Informational-Entropy Geometry",
showlegend=False,
bargap=0.1,
margin=dict(l=20, r=20, t=60, b=20)
)
return fig
def create_2d_projection_plot(df_filtered, lens_selected, color_scheme):
"""Create 2D projection plot."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
# Color mapping
if color_scheme == "Species":
color_values = [1 if s == "Human" else 0 for s in df_filtered['source']]
colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']]
colorbar_title = "Species"
elif color_scheme == "Emotion":
unique_emotions = df_filtered['label'].unique()
emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)}
color_values = [emotion_map[label] for label in df_filtered['label']]
colorscale = 'Viridis'
colorbar_title = "Emotional State"
else:
color_values = df_filtered['cluster'].values
colorscale = 'Plotly3'
colorbar_title = "Cluster"
fig = go.Figure()
fig.add_trace(go.Scatter(
x=df_filtered['x'],
y=df_filtered['y'],
mode='markers',
marker=dict(
size=8,
color=color_values,
colorscale=colorscale,
showscale=True,
colorbar=dict(title=colorbar_title),
opacity=0.7,
line=dict(width=0.5, color='rgba(50,50,50,0.5)')
),
text=[f"{row['source']}: {row['label']}" for _, row in df_filtered.iterrows()],
name='Communications'
))
fig.update_layout(
title="2D Manifold Projection",
xaxis_title='Dimension 1',
yaxis_title='Dimension 2',
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
def create_density_heatmap(df_filtered):
"""Create density heatmap."""
from scipy.stats import gaussian_kde
if len(df_filtered) < 10:
return go.Figure(layout={"title": "Insufficient data for density plot"})
x = df_filtered['x'].values
y = df_filtered['y'].values
# Create density estimation
try:
kde = gaussian_kde(np.vstack([x, y]))
# Create grid
x_range = np.linspace(x.min(), x.max(), 50)
y_range = np.linspace(y.min(), y.max(), 50)
X, Y = np.meshgrid(x_range, y_range)
positions = np.vstack([X.ravel(), Y.ravel()])
Z = kde(positions).reshape(X.shape)
fig = go.Figure(data=go.Heatmap(
x=x_range,
y=y_range,
z=Z,
colorscale='Viridis',
showscale=True
))
# Add scatter points
fig.add_trace(go.Scatter(
x=x, y=y,
mode='markers',
marker=dict(size=4, color='white', opacity=0.8),
name='Data Points'
))
fig.update_layout(
title="Communication Density Landscape",
xaxis_title='Dimension 1',
yaxis_title='Dimension 2',
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
except:
return go.Figure(layout={"title": "Could not create density plot"})
def create_feature_distributions(df_filtered, lens_selected):
"""Create feature distribution plots."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
fig = make_subplots(
rows=2, cols=2,
subplot_titles=(
f"Alpha Distribution ({lens_selected})",
f"SRL Distribution ({lens_selected})",
"Species Distribution",
"Emotion Distribution"
),
specs=[[{"type": "histogram"}, {"type": "histogram"}],
[{"type": "bar"}, {"type": "bar"}]]
)
# Alpha distribution
if alpha_col in df_filtered.columns:
fig.add_trace(go.Histogram(
x=df_filtered[alpha_col],
name="Alpha",
nbinsx=30,
marker_color='lightblue'
), row=1, col=1)
# SRL distribution
if srl_col in df_filtered.columns:
fig.add_trace(go.Histogram(
x=df_filtered[srl_col],
name="SRL",
nbinsx=30,
marker_color='lightgreen'
), row=1, col=2)
# Species distribution
species_counts = df_filtered['source'].value_counts()
fig.add_trace(go.Bar(
x=species_counts.index,
y=species_counts.values,
name="Species",
marker_color=['#1f77b4', '#ff7f0e']
), row=2, col=1)
# Emotion distribution
emotion_counts = df_filtered['label'].value_counts().head(10)
fig.add_trace(go.Bar(
x=emotion_counts.index,
y=emotion_counts.values,
name="Emotions",
marker_color='lightcoral'
), row=2, col=2)
fig.update_layout(
title_text="Statistical Distributions",
showlegend=False,
margin=dict(l=0, r=0, b=0, t=60)
)
return fig
def create_cluster_analysis(df_filtered):
"""Create cluster analysis visualization."""
fig = make_subplots(
rows=1, cols=2,
subplot_titles=("Cluster Distribution", "Cluster Composition"),
specs=[[{"type": "bar"}, {"type": "bar"}]]
)
# Cluster distribution
cluster_counts = df_filtered['cluster'].value_counts().sort_index()
fig.add_trace(go.Bar(
x=[f"C{i}" for i in cluster_counts.index],
y=cluster_counts.values,
name="Cluster Size",
marker_color='skyblue'
), row=1, col=1)
# Species composition per cluster
cluster_species = df_filtered.groupby(['cluster', 'source']).size().unstack(fill_value=0)
if len(cluster_species.columns) > 0:
for species in cluster_species.columns:
fig.add_trace(go.Bar(
x=[f"C{i}" for i in cluster_species.index],
y=cluster_species[species],
name=species,
marker_color='#1f77b4' if species == 'Human' else '#ff7f0e'
), row=1, col=2)
fig.update_layout(
title_text="Cluster Analysis",
margin=dict(l=0, r=0, b=0, t=60)
)
return fig
def create_similarity_matrix(df_filtered, lens_selected):
"""Create species similarity matrix."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
# Calculate mean values for each species-emotion combination
similarity_data = []
for species in df_filtered['source'].unique():
for emotion in df_filtered['label'].unique():
subset = df_filtered[(df_filtered['source'] == species) & (df_filtered['label'] == emotion)]
if len(subset) > 0:
alpha_mean = subset[alpha_col].mean() if alpha_col in subset.columns else 0
srl_mean = subset[srl_col].mean() if srl_col in subset.columns else 0
similarity_data.append({
'species': species,
'emotion': emotion,
'alpha': alpha_mean,
'srl': srl_mean,
'combined': alpha_mean + srl_mean
})
if not similarity_data:
return go.Figure(layout={"title": "No data for similarity matrix"})
similarity_df = pd.DataFrame(similarity_data)
pivot_table = similarity_df.pivot(index='emotion', columns='species', values='combined')
fig = go.Figure(data=go.Heatmap(
z=pivot_table.values,
x=pivot_table.columns,
y=pivot_table.index,
colorscale='RdYlBu_r',
showscale=True,
colorbar=dict(title="Similarity Score")
))
fig.update_layout(
title="Cross-Species Similarity Matrix",
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
def calculate_live_statistics(df_filtered, lens_selected):
"""Calculate live statistics for the dataset."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
stats = {
'total_samples': len(df_filtered),
'species_counts': df_filtered['source'].value_counts().to_dict(),
'emotion_counts': len(df_filtered['label'].unique()),
'cluster_count': len(df_filtered['cluster'].unique())
}
if alpha_col in df_filtered.columns:
stats['alpha_mean'] = df_filtered[alpha_col].mean()
stats['alpha_std'] = df_filtered[alpha_col].std()
if srl_col in df_filtered.columns:
stats['srl_mean'] = df_filtered[srl_col].mean()
stats['srl_std'] = df_filtered[srl_col].std()
# Format as HTML
html_content = f"""
<div style="padding: 10px; background-color: #f0f8ff; border-radius: 8px;">
<h4>📊 Live Dataset Statistics</h4>
<p><strong>Total Samples:</strong> {stats['total_samples']}</p>
<p><strong>Species:</strong>
{' | '.join([f"{k}: {v}" for k, v in stats['species_counts'].items()])}
</p>
<p><strong>Emotions:</strong> {stats['emotion_counts']}</p>
<p><strong>Clusters:</strong> {stats['cluster_count']}</p>
"""
if 'alpha_mean' in stats:
html_content += f"""
<p><strong>Alpha ({lens_selected}):</strong>
μ={stats['alpha_mean']:.3f}, σ={stats['alpha_std']:.3f}
</p>
"""
if 'srl_mean' in stats:
html_content += f"""
<p><strong>SRL ({lens_selected}):</strong>
μ={stats['srl_mean']:.3f}, σ={stats['srl_std']:.3f}
</p>
"""
html_content += "</div>"
return html_content
def update_manifold_visualization(species_selection, emotion_selection, lens_selection,
alpha_min, alpha_max, srl_min, srl_max,
point_size, show_boundary, show_trajectories, color_scheme):
"""Update all manifold visualizations with filters."""
df_filtered = df_combined.copy()
if species_selection:
df_filtered = df_filtered[df_filtered['source'].isin(species_selection)]
if emotion_selection:
df_filtered = df_filtered[df_filtered['label'].isin(emotion_selection)]
alpha_col = f"diag_alpha_{lens_selection}"
srl_col = f"diag_srl_{lens_selection}"
if alpha_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[alpha_col] >= alpha_min) &
(df_filtered[alpha_col] <= alpha_max)
]
if srl_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[srl_col] >= srl_min) &
(df_filtered[srl_col] <= srl_max)
]
if len(df_filtered) == 0:
empty_fig = go.Figure().add_annotation(
text="No data points match the current filters",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False
)
empty_stats = "<p>No data available</p>"
return empty_fig, empty_fig, empty_fig, empty_fig, empty_fig, empty_fig, empty_stats
# Create all visualizations
main_plot = create_enhanced_manifold_plot(
df_filtered, lens_selection, color_scheme, point_size,
show_boundary, show_trajectories
)
projection_2d = create_2d_projection_plot(df_filtered, lens_selection, color_scheme)
density_plot = create_density_heatmap(df_filtered)
feature_dists = create_feature_distributions(df_filtered, lens_selection)
cluster_plot = create_cluster_analysis(df_filtered)
similarity_plot = create_similarity_matrix(df_filtered, lens_selection)
stats_html = calculate_live_statistics(df_filtered, lens_selection)
return main_plot, projection_2d, density_plot, feature_dists, cluster_plot, similarity_plot, stats_html
def export_filtered_data(species_selection, emotion_selection, lens_selection,
alpha_min, alpha_max, srl_min, srl_max):
"""Export filtered dataset for analysis."""
import tempfile
import json
df_filtered = df_combined.copy()
if species_selection:
df_filtered = df_filtered[df_filtered['source'].isin(species_selection)]
if emotion_selection:
df_filtered = df_filtered[df_filtered['label'].isin(emotion_selection)]
alpha_col = f"diag_alpha_{lens_selection}"
srl_col = f"diag_srl_{lens_selection}"
if alpha_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[alpha_col] >= alpha_min) &
(df_filtered[alpha_col] <= alpha_max)
]
if srl_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[srl_col] >= srl_min) &
(df_filtered[srl_col] <= srl_max)
]
if len(df_filtered) == 0:
return "<p style='color: red;'>❌ No data to export with current filters</p>"
# Create export summary
export_summary = {
"export_timestamp": pd.Timestamp.now().isoformat(),
"total_samples": len(df_filtered),
"species_counts": df_filtered['source'].value_counts().to_dict(),
"emotion_types": df_filtered['label'].unique().tolist(),
"lens_used": lens_selection,
"filters_applied": {
"species": species_selection,
"emotions": emotion_selection,
"alpha_range": [alpha_min, alpha_max],
"srl_range": [srl_min, srl_max]
}
}
summary_html = f"""
<div style="padding: 10px; background-color: #e8f5e8; border-radius: 8px; margin-top: 10px;">
<h4>✅ Export Ready</h4>
<p><strong>Samples:</strong> {export_summary['total_samples']}</p>
<p><strong>Species:</strong> {', '.join([f"{k}({v})" for k, v in export_summary['species_counts'].items()])}</p>
<p><strong>Emotions:</strong> {len(export_summary['emotion_types'])} types</p>
<p><strong>Lens:</strong> {lens_selection}</p>
<p><em>Data ready for download via your browser's dev tools or notebook integration.</em></p>
</div>
"""
return summary_html
# ---------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) as demo:
gr.Markdown("""
# 🌟 **CMT Holographic Information Geometry Engine v5.0**
*Revolutionary interspecies communication analysis platform*
**🚀 Enhanced Features:**
- **🌌 Universal Manifold Explorer**: Multi-dimensional visualization suite with live statistics
- **🔬 Interactive Holography**: Cross-species communication mapping with mathematical precision
- **📊 Real-time Analytics**: Dynamic filtering, clustering, and similarity analysis
- **🎨 Rich Visualizations**: 2D/3D plots, density heatmaps, feature distributions
- **💾 Data Export**: Export filtered datasets for external analysis
- **⚡ Auto-loading**: Manifold visualizations load automatically on startup
---
**🎯 Goal**: Map the geometric structure of communication to reveal universal patterns across species
""")
with gr.Tabs():
with gr.TabItem("🌌 Universal Manifold Explorer"):
gr.Markdown("# 🎯 **Interspecies Communication Map**")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 🔬 **Analysis Controls**")
species_filter = gr.CheckboxGroup(
label="Species Selection",
choices=["Human", "Dog"],
value=["Human", "Dog"]
)
emotion_filter = gr.CheckboxGroup(
label="Emotional States",
choices=list(df_combined['label'].unique()),
value=list(df_combined['label'].unique())
)
lens_selector = gr.Dropdown(
label="Mathematical Lens",
choices=["gamma", "zeta", "airy", "bessel"],
value="gamma"
)
with gr.Accordion("🎛️ Advanced Filters", open=False):
alpha_min = gr.Slider(label="Alpha Min", minimum=0, maximum=5, value=0, step=0.1)
alpha_max = gr.Slider(label="Alpha Max", minimum=0, maximum=5, value=5, step=0.1)
srl_min = gr.Slider(label="SRL Min", minimum=0, maximum=100, value=0, step=1)
srl_max = gr.Slider(label="SRL Max", minimum=0, maximum=100, value=100, step=1)
with gr.Accordion("🎨 Visualization Options", open=True):
point_size = gr.Slider(label="Point Size", minimum=2, maximum=15, value=6, step=1)
show_species_boundary = gr.Checkbox(label="Show Species Boundary", value=True)
show_trajectories = gr.Checkbox(label="Show Trajectories", value=False)
color_scheme = gr.Dropdown(
label="Color Scheme",
choices=["Species", "Emotion", "CMT_Alpha", "CMT_SRL", "Cluster"],
value="Species"
)
with gr.Accordion("📊 Live Statistics", open=True):
stats_html = gr.HTML(label="Dataset Statistics")
similarity_matrix = gr.Plot(label="Species Similarity Matrix")
with gr.Accordion("💾 Data Export", open=False):
gr.Markdown("**Export filtered dataset for further analysis**")
export_button = gr.Button("📥 Export Filtered Data", variant="secondary")
export_status = gr.HTML("")
with gr.Column(scale=3):
manifold_plot = gr.Plot(label="Universal Communication Manifold")
with gr.Row():
projection_2d = gr.Plot(label="2D Projection")
density_plot = gr.Plot(label="Density Heatmap")
with gr.Row():
feature_distributions = gr.Plot(label="Feature Distributions")
cluster_analysis = gr.Plot(label="Cluster Analysis")
# Wire up events
manifold_inputs = [
species_filter, emotion_filter, lens_selector,
alpha_min, alpha_max, srl_min, srl_max,
point_size, show_species_boundary, show_trajectories, color_scheme
]
manifold_outputs = [
manifold_plot, projection_2d, density_plot,
feature_distributions, cluster_analysis, similarity_matrix, stats_html
]
for component in manifold_inputs:
component.change(
update_manifold_visualization,
inputs=manifold_inputs,
outputs=manifold_outputs
)
# Wire up export button
export_button.click(
export_filtered_data,
inputs=[
species_filter, emotion_filter, lens_selector,
alpha_min, alpha_max, srl_min, srl_max
],
outputs=[export_status]
)
with gr.TabItem("🔬 Interactive Holography"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Cross-Species Holography")
species_dropdown = gr.Dropdown(
label="Select Species",
choices=["Dog", "Human"],
value="Dog"
)
dog_files = df_combined[df_combined["source"] == "Dog"]["filepath"].tolist()
human_files = df_combined[df_combined["source"] == "Human"]["filepath"].tolist()
primary_dropdown = gr.Dropdown(
label="Primary File",
choices=dog_files,
value=dog_files[0] if dog_files else None
)
neighbor_dropdown = gr.Dropdown(
label="Cross-Species Neighbor",
choices=human_files,
value=human_files[0] if human_files else None
)
holo_lens_dropdown = gr.Dropdown(
label="CMT Lens",
choices=["gamma", "zeta", "airy", "bessel"],
value="gamma"
)
holo_resolution_slider = gr.Slider(
label="Field Resolution",
minimum=20, maximum=100, step=5, value=40
)
holo_wavelength_slider = gr.Slider(
label="Wavelength (nm)",
minimum=380, maximum=750, step=5, value=550
)
primary_info_html = gr.HTML(label="Primary Info")
neighbor_info_html = gr.HTML(label="Neighbor Info")
with gr.Column(scale=2):
dual_holography_plot = gr.Plot(label="Holographic Comparison")
diagnostic_plot = gr.Plot(label="Diagnostic Analysis")
entropy_plot = gr.Plot(label="Entropy Geometry")
def update_cross_species_view(species, primary_file, neighbor_file, lens, resolution, wavelength):
if not primary_file:
empty_fig = go.Figure(layout={"title": "Select a primary file"})
return empty_fig, empty_fig, empty_fig, "", ""
primary_row = df_combined[
(df_combined["filepath"] == primary_file) &
(df_combined["source"] == species)
].iloc[0] if len(df_combined[
(df_combined["filepath"] == primary_file) &
(df_combined["source"] == species)
]) > 0 else None
if primary_row is None:
empty_fig = go.Figure(layout={"title": "Primary file not found"})
return empty_fig, empty_fig, empty_fig, "", ""
if not neighbor_file:
neighbor_row = find_nearest_cross_species_neighbor(primary_row, df_combined)
else:
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_row = df_combined[
(df_combined["filepath"] == neighbor_file) &
(df_combined["source"] == opposite_species)
].iloc[0] if len(df_combined[
(df_combined["filepath"] == neighbor_file) &
(df_combined["source"] == opposite_species)
]) > 0 else None
primary_cmt = get_cmt_data_from_csv(primary_row, lens)
neighbor_cmt = get_cmt_data_from_csv(neighbor_row, lens) if neighbor_row is not None else None
if primary_cmt and neighbor_cmt:
primary_title = f"{species}: {primary_row.get('label', 'Unknown')}"
neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}"
dual_holo = create_dual_holography_plot(
primary_cmt["z"], primary_cmt["phi"],
neighbor_cmt["z"], neighbor_cmt["phi"],
resolution, wavelength, primary_title, neighbor_title
)
diag = create_diagnostic_plots(primary_cmt["z"], primary_cmt["w"])
entropy = create_entropy_geometry_plot(primary_cmt["phi"])
else:
dual_holo = go.Figure(layout={"title": "Error processing data"})
diag = go.Figure(layout={"title": "Error processing data"})
entropy = go.Figure(layout={"title": "Error processing data"})
if primary_cmt:
primary_info = f"""
<b>Primary:</b> {primary_row['filepath']}<br>
<b>Species:</b> {primary_row['source']}<br>
<b>Label:</b> {primary_row.get('label', 'N/A')}<br>
<b>Alpha:</b> {primary_cmt['alpha']:.4f}<br>
<b>SRL:</b> {primary_cmt['srl']:.4f}
"""
else:
primary_info = ""
if neighbor_cmt and neighbor_row is not None:
neighbor_info = f"""
<b>Neighbor:</b> {neighbor_row['filepath']}<br>
<b>Species:</b> {neighbor_row['source']}<br>
<b>Label:</b> {neighbor_row.get('label', 'N/A')}<br>
<b>Alpha:</b> {neighbor_cmt['alpha']:.4f}<br>
<b>SRL:</b> {neighbor_cmt['srl']:.4f}
"""
else:
neighbor_info = ""
return dual_holo, diag, entropy, primary_info, neighbor_info
def update_dropdowns_on_species_change(species):
species_files = df_combined[df_combined["source"] == species]["filepath"].tolist()
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_files = df_combined[df_combined["source"] == opposite_species]["filepath"].tolist()
return (
gr.Dropdown(choices=species_files, value=species_files[0] if species_files else ""),
gr.Dropdown(choices=neighbor_files, value=neighbor_files[0] if neighbor_files else "")
)
species_dropdown.change(
update_dropdowns_on_species_change,
inputs=[species_dropdown],
outputs=[primary_dropdown, neighbor_dropdown]
)
cross_species_inputs = [
species_dropdown, primary_dropdown, neighbor_dropdown,
holo_lens_dropdown, holo_resolution_slider, holo_wavelength_slider
]
cross_species_outputs = [
dual_holography_plot, diagnostic_plot, entropy_plot,
primary_info_html, neighbor_info_html
]
for input_component in cross_species_inputs:
input_component.change(
update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs
)
# Auto-load manifold visualizations on startup
demo.load(
update_manifold_visualization,
inputs=[
gr.State(["Human", "Dog"]), # species_filter default
gr.State(list(df_combined['label'].unique())), # emotion_filter default
gr.State("gamma"), # lens_selector default
gr.State(0), # alpha_min default
gr.State(5), # alpha_max default
gr.State(0), # srl_min default
gr.State(100), # srl_max default
gr.State(6), # point_size default
gr.State(True), # show_species_boundary default
gr.State(False), # show_trajectories default
gr.State("Species") # color_scheme default
],
outputs=manifold_outputs
)
print("✅ CMT Holographic Visualization Suite Ready!")
if __name__ == "__main__":
demo.launch(share=False, debug=False)