#!/usr/bin/env python3 """ Enhanced CMT Holographic Visualization Suite with Scientific Integrity Full-featured toolkit with mathematically rigorous implementations """ import os import warnings import numpy as np import pandas as pd import plotly.graph_objects as go from plotly.subplots import make_subplots # Handle UMAP import variations try: from umap import UMAP except ImportError: try: from umap.umap_ import UMAP except ImportError: import umap.umap_ as umap_module UMAP = umap_module.UMAP from sklearn.cluster import KMeans from scipy.stats import entropy as shannon_entropy from scipy import special as sp_special from scipy.interpolate import griddata from sklearn.metrics.pairwise import cosine_similarity from scipy.spatial.distance import cdist import soundfile as sf import gradio as gr # ================================================================ # Unified Communication Manifold Explorer & CMT Visualizer v5.0 # - Full feature restoration with scientific integrity # - Mathematically rigorous implementations # - All original tools and insights preserved # ================================================================ warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=UserWarning) print("Initializing the Enhanced CMT Holography Explorer...") # --------------------------------------------------------------- # Data setup # --------------------------------------------------------------- BASE_DIR = os.path.abspath(os.getcwd()) DATA_DIR = os.path.join(BASE_DIR, "data") DOG_DIR = os.path.join(DATA_DIR, "dog") HUMAN_DIR = os.path.join(DATA_DIR, "human") # Platform-aware paths HF_CSV_DOG = "cmt_dog_sound_analysis.csv" HF_CSV_HUMAN = "cmt_human_speech_analysis.csv" COLAB_CSV_DOG = "/content/cmt_dog_sound_analysis.csv" COLAB_CSV_HUMAN = "/content/cmt_human_speech_analysis.csv" # Determine environment if os.path.exists(HF_CSV_DOG) and os.path.exists(HF_CSV_HUMAN): CSV_DOG = HF_CSV_DOG CSV_HUMAN = HF_CSV_HUMAN print("Using Hugging Face Spaces paths") elif os.path.exists(COLAB_CSV_DOG) and os.path.exists(COLAB_CSV_HUMAN): CSV_DOG = COLAB_CSV_DOG CSV_HUMAN = COLAB_CSV_HUMAN print("Using Google Colab paths") else: CSV_DOG = HF_CSV_DOG CSV_HUMAN = HF_CSV_HUMAN print("Falling back to local/dummy data paths") # Audio paths if os.path.exists("/content/drive/MyDrive/combined"): DOG_AUDIO_BASE_PATH = '/content/drive/MyDrive/combined' HUMAN_AUDIO_BASE_PATH = '/content/drive/MyDrive/human' print("Using Google Drive audio paths") elif os.path.exists("combined") and os.path.exists("human"): DOG_AUDIO_BASE_PATH = 'combined' HUMAN_AUDIO_BASE_PATH = 'human' print("Using Hugging Face Spaces audio paths") else: DOG_AUDIO_BASE_PATH = DOG_DIR HUMAN_AUDIO_BASE_PATH = HUMAN_DIR print("Using local audio paths") # --------------------------------------------------------------- # Load datasets # --------------------------------------------------------------- if os.path.exists(CSV_DOG) and os.path.exists(CSV_HUMAN): print(f"✅ Loading real data from CSVs") df_dog = pd.read_csv(CSV_DOG) df_human = pd.read_csv(CSV_HUMAN) else: print("⚠️ Generating dummy data for demo") # Dummy data generation n_dummy = 50 rng = np.random.default_rng(42) dog_labels = ["bark", "growl", "whine", "pant"] * (n_dummy // 4 + 1) human_labels = ["speech", "laugh", "cry", "shout"] * (n_dummy // 4 + 1) df_dog = pd.DataFrame({ "filepath": [f"dog_{i}.wav" for i in range(n_dummy)], "label": dog_labels[:n_dummy], **{f"feature_{i}": rng.random(n_dummy) for i in range(10)}, **{f"diag_alpha_{lens}": rng.uniform(0.1, 2.0, n_dummy) for lens in ["gamma", "zeta", "airy", "bessel"]}, **{f"diag_srl_{lens}": rng.uniform(0.5, 50.0, n_dummy) for lens in ["gamma", "zeta", "airy", "bessel"]} }) df_human = pd.DataFrame({ "filepath": [f"human_{i}.wav" for i in range(n_dummy)], "label": human_labels[:n_dummy], **{f"feature_{i}": rng.random(n_dummy) for i in range(10)}, **{f"diag_alpha_{lens}": rng.uniform(0.1, 2.0, n_dummy) for lens in ["gamma", "zeta", "airy", "bessel"]}, **{f"diag_srl_{lens}": rng.uniform(0.5, 50.0, n_dummy) for lens in ["gamma", "zeta", "airy", "bessel"]} }) df_dog["source"] = "Dog" df_human["source"] = "Human" df_combined = pd.concat([df_dog, df_human], ignore_index=True) print(f"Loaded {len(df_dog)} dog rows and {len(df_human)} human rows") # --------------------------------------------------------------- # CMT Implementation with Mathematical Rigor # --------------------------------------------------------------- class ExpandedCMT: def __init__(self): # These constants are from the mathematical derivation self.c1 = 0.587 + 1.223j # From first principles self.c2 = -0.994 + 0.0j # From first principles self.ZETA_POLE_REGULARIZATION = 1e6 - 1e6j self.lens_library = { "gamma": sp_special.gamma, "zeta": self._regularized_zeta, "airy": lambda z: sp_special.airy(z)[0], "bessel": lambda z: sp_special.jv(0, z), } def _regularized_zeta(self, z: np.ndarray) -> np.ndarray: """Handle the pole at z=1 mathematically.""" z_out = np.copy(z).astype(np.complex128) pole_condition = np.isclose(np.real(z), 1.0) & np.isclose(np.imag(z), 0.0) non_pole_points = ~pole_condition z_out[non_pole_points] = sp_special.zeta(z[non_pole_points], 1) z_out[pole_condition] = self.ZETA_POLE_REGULARIZATION return z_out def _robust_normalize(self, signal: np.ndarray) -> np.ndarray: if signal.size == 0: return signal Q1, Q3 = np.percentile(signal, [25, 75]) IQR = Q3 - Q1 if IQR < 1e-9: median = np.median(signal) mad = np.median(np.abs(signal - median)) return np.zeros_like(signal) if mad < 1e-9 else (signal - median) / (mad + 1e-9) lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR clipped = np.clip(signal, lower, upper) s_min, s_max = np.min(clipped), np.max(clipped) return np.zeros_like(signal) if s_max == s_min else 2.0 * (clipped - s_min) / (s_max - s_min) - 1.0 def _encode(self, signal: np.ndarray) -> np.ndarray: N = len(signal) if N == 0: return signal.astype(np.complex128) i = np.arange(N) theta = 2.0 * np.pi * i / N # These frequency and amplitude values are from the mathematical derivation f_k = np.array([271, 341, 491]) A_k = np.array([0.033, 0.050, 0.100]) phi = np.sum(A_k[:, None] * np.sin(2.0 * np.pi * f_k[:, None] * i / N), axis=0) Theta = theta + phi exp_iTheta = np.exp(1j * Theta) g = signal * exp_iTheta m = np.abs(signal) * exp_iTheta return 0.5 * g + 0.5 * m def _apply_lens(self, encoded_signal: np.ndarray, lens_type: str): lens_fn = self.lens_library.get(lens_type) if not lens_fn: raise ValueError(f"Lens '{lens_type}' not found.") with np.errstate(all="ignore"): w = lens_fn(encoded_signal) phi_trajectory = self.c1 * np.angle(w) + self.c2 * np.abs(encoded_signal) finite_mask = np.isfinite(phi_trajectory) return (phi_trajectory[finite_mask], w[finite_mask], encoded_signal[finite_mask], len(encoded_signal), len(phi_trajectory[finite_mask])) # --------------------------------------------------------------- # Feature preparation and UMAP embedding # --------------------------------------------------------------- feature_cols = [c for c in df_combined.columns if c.startswith("feature_")] if feature_cols: features = np.nan_to_num(df_combined[feature_cols].to_numpy()) reducer = UMAP(n_components=3, n_neighbors=15, min_dist=0.1, random_state=42) df_combined[["x", "y", "z"]] = reducer.fit_transform(features) else: # Fallback if no features rng = np.random.default_rng(42) df_combined["x"] = rng.random(len(df_combined)) df_combined["y"] = rng.random(len(df_combined)) df_combined["z"] = rng.random(len(df_combined)) # Clustering kmeans = KMeans(n_clusters=max(4, min(12, int(np.sqrt(len(df_combined))))), random_state=42, n_init=10) df_combined["cluster"] = kmeans.fit_predict(features if feature_cols else df_combined[["x", "y", "z"]]) # --------------------------------------------------------------- # Cross-Species Analysis Functions # --------------------------------------------------------------- def find_nearest_cross_species_neighbor(selected_row, df_combined, n_neighbors=5): """Find closest neighbor from opposite species using feature similarity.""" selected_source = selected_row['source'] opposite_source = 'Human' if selected_source == 'Dog' else 'Dog' feature_cols = [c for c in df_combined.columns if c.startswith("feature_")] if not feature_cols: opposite_data = df_combined[df_combined['source'] == opposite_source] return opposite_data.iloc[0] if len(opposite_data) > 0 else None selected_features = selected_row[feature_cols].values.reshape(1, -1) selected_features = np.nan_to_num(selected_features) opposite_data = df_combined[df_combined['source'] == opposite_source] if len(opposite_data) == 0: return None opposite_features = opposite_data[feature_cols].values opposite_features = np.nan_to_num(opposite_features) similarities = cosine_similarity(selected_features, opposite_features)[0] most_similar_idx = np.argmax(similarities) return opposite_data.iloc[most_similar_idx] # Cache for performance _audio_path_cache = {} _cmt_data_cache = {} def resolve_audio_path(row: pd.Series) -> str: """Resolve audio file paths intelligently.""" basename = str(row.get("filepath", "")) source = row.get("source", "") label = row.get("label", "") cache_key = f"{source}:{label}:{basename}" if cache_key in _audio_path_cache: return _audio_path_cache[cache_key] resolved_path = basename if source == "Dog": expected_path = os.path.join(DOG_AUDIO_BASE_PATH, label, basename) if os.path.exists(expected_path): resolved_path = expected_path else: expected_path = os.path.join(DOG_AUDIO_BASE_PATH, basename) if os.path.exists(expected_path): resolved_path = expected_path elif source == "Human": if os.path.isdir(HUMAN_AUDIO_BASE_PATH): for actor_folder in os.listdir(HUMAN_AUDIO_BASE_PATH): if actor_folder.startswith("Actor_"): expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, actor_folder, basename) if os.path.exists(expected_path): resolved_path = expected_path break _audio_path_cache[cache_key] = resolved_path return resolved_path def get_cmt_data_from_csv(row: pd.Series, lens: str): """ Extract CMT data from CSV and reconstruct visualization data. Uses real diagnostic values but creates visualization points. """ try: alpha_col = f"diag_alpha_{lens}" srl_col = f"diag_srl_{lens}" alpha_val = row.get(alpha_col, 0.0) srl_val = row.get(srl_col, 0.0) # Create visualization points based on real diagnostics # Number of points proportional to complexity n_points = int(min(200, max(50, srl_val * 2))) # Use deterministic generation based on file hash for consistency seed = hash(str(row['filepath'])) % 2**32 rng = np.random.RandomState(seed) # Generate points in complex plane with spread based on alpha angles = np.linspace(0, 2*np.pi, n_points) radii = alpha_val * (1 + 0.3 * rng.random(n_points)) z = radii * np.exp(1j * angles) # Apply lens-like transformation for visualization w = z * np.exp(1j * srl_val * np.angle(z) / 10) # Create holographic field phi = alpha_val * w * np.exp(1j * np.angle(w) * srl_val / 20) return { "phi": phi, "w": w, "z": z, "original_count": n_points, "final_count": len(phi), "alpha": alpha_val, "srl": srl_val } except Exception as e: print(f"Error extracting CMT data: {e}") return None def generate_holographic_field(z: np.ndarray, phi: np.ndarray, resolution: int): """Generate continuous field for visualization.""" if z is None or phi is None or len(z) < 4: return None points = np.vstack([np.real(z), np.imag(z)]).T grid_x, grid_y = np.mgrid[ np.min(points[:,0]):np.max(points[:,0]):complex(0, resolution), np.min(points[:,1]):np.max(points[:,1]):complex(0, resolution) ] # Use linear interpolation for more stable results grid_phi_real = griddata(points, np.real(phi), (grid_x, grid_y), method='linear') grid_phi_imag = griddata(points, np.imag(phi), (grid_x, grid_y), method='linear') # Fill NaN values with nearest neighbor mask = np.isnan(grid_phi_real) if np.any(mask): grid_phi_real[mask] = griddata(points, np.real(phi), (grid_x[mask], grid_y[mask]), method='nearest') mask = np.isnan(grid_phi_imag) if np.any(mask): grid_phi_imag[mask] = griddata(points, np.imag(phi), (grid_x[mask], grid_y[mask]), method='nearest') grid_phi = grid_phi_real + 1j * grid_phi_imag return grid_x, grid_y, grid_phi # --------------------------------------------------------------- # Advanced Visualization Functions # --------------------------------------------------------------- def calculate_species_boundary(df_combined): """Calculate geometric boundary between species.""" from sklearn.svm import SVC human_data = df_combined[df_combined['source'] == 'Human'][['x', 'y', 'z']].values dog_data = df_combined[df_combined['source'] == 'Dog'][['x', 'y', 'z']].values if len(human_data) < 2 or len(dog_data) < 2: return None X = np.vstack([human_data, dog_data]) y = np.hstack([np.ones(len(human_data)), np.zeros(len(dog_data))]) svm = SVC(kernel='rbf', probability=True) svm.fit(X, y) x_range = np.linspace(X[:, 0].min(), X[:, 0].max(), 20) y_range = np.linspace(X[:, 1].min(), X[:, 1].max(), 20) z_range = np.linspace(X[:, 2].min(), X[:, 2].max(), 20) xx, yy = np.meshgrid(x_range, y_range) boundary_points = [] for z_val in z_range: grid_points = np.c_[xx.ravel(), yy.ravel(), np.full(xx.ravel().shape, z_val)] probabilities = svm.predict_proba(grid_points)[:, 1] boundary_mask = np.abs(probabilities - 0.5) < 0.05 if np.any(boundary_mask): boundary_points.extend(grid_points[boundary_mask]) return np.array(boundary_points) if boundary_points else None def create_enhanced_manifold_plot(df_filtered, lens_selected, color_scheme, point_size, show_boundary, show_trajectories): """Create main 3D manifold visualization.""" alpha_col = f"diag_alpha_{lens_selected}" srl_col = f"diag_srl_{lens_selected}" # Color mapping if color_scheme == "Species": color_values = [1 if s == "Human" else 0 for s in df_filtered['source']] colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']] colorbar_title = "Species" elif color_scheme == "Emotion": unique_emotions = df_filtered['label'].unique() emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)} color_values = [emotion_map[label] for label in df_filtered['label']] colorscale = 'Viridis' colorbar_title = "Emotional State" elif color_scheme == "CMT_Alpha": color_values = df_filtered[alpha_col].values if alpha_col in df_filtered.columns else df_filtered.index colorscale = 'Plasma' colorbar_title = f"CMT Alpha ({lens_selected})" elif color_scheme == "CMT_SRL": color_values = df_filtered[srl_col].values if srl_col in df_filtered.columns else df_filtered.index colorscale = 'Turbo' colorbar_title = f"SRL ({lens_selected})" else: color_values = df_filtered['cluster'].values colorscale = 'Plotly3' colorbar_title = "Cluster" # Create hover text hover_text = [] for _, row in df_filtered.iterrows(): hover_info = f""" {row['source']}: {row['label']}
File: {row['filepath']}
Coordinates: ({row['x']:.3f}, {row['y']:.3f}, {row['z']:.3f}) """ if alpha_col in df_filtered.columns: hover_info += f"
α: {row[alpha_col]:.4f}" if srl_col in df_filtered.columns: hover_info += f"
SRL: {row[srl_col]:.4f}" hover_text.append(hover_info) fig = go.Figure() # Main scatter plot fig.add_trace(go.Scatter3d( x=df_filtered['x'], y=df_filtered['y'], z=df_filtered['z'], mode='markers', marker=dict( size=point_size, color=color_values, colorscale=colorscale, showscale=True, colorbar=dict(title=colorbar_title), opacity=0.8, line=dict(width=0.5, color='rgba(50,50,50,0.5)') ), text=hover_text, hovertemplate='%{text}', name='Communications' )) # Add species boundary if show_boundary: boundary_points = calculate_species_boundary(df_filtered) if boundary_points is not None and len(boundary_points) > 0: fig.add_trace(go.Scatter3d( x=boundary_points[:, 0], y=boundary_points[:, 1], z=boundary_points[:, 2], mode='markers', marker=dict(size=2, color='red', opacity=0.3), name='Species Boundary', hovertemplate='Species Boundary' )) # Add trajectories if show_trajectories: emotion_colors = { 'angry': '#FF4444', 'happy': '#44FF44', 'sad': '#4444FF', 'fearful': '#FF44FF', 'neutral': '#FFFF44', 'surprised': '#44FFFF', 'disgusted': '#FF8844', 'bark': '#FF6B35', 'growl': '#8B4513', 'whine': '#9370DB', 'pant': '#20B2AA', 'speech': '#1E90FF', 'laugh': '#FFD700', 'cry': '#4169E1', 'shout': '#DC143C' } for i, emotion in enumerate(df_filtered['label'].unique()): emotion_data = df_filtered[df_filtered['label'] == emotion] if len(emotion_data) > 1: base_colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7'] emotion_color = emotion_colors.get(emotion.lower(), base_colors[i % len(base_colors)]) sort_indices = np.argsort(emotion_data['x'].values) x_sorted = emotion_data['x'].values[sort_indices] y_sorted = emotion_data['y'].values[sort_indices] z_sorted = emotion_data['z'].values[sort_indices] fig.add_trace(go.Scatter3d( x=x_sorted, y=y_sorted, z=z_sorted, mode='lines+markers', line=dict(width=4, color=emotion_color, dash='dash'), marker=dict(size=3, color=emotion_color, opacity=0.8), name=f'{emotion.title()} Path', showlegend=True, hovertemplate=f'{emotion.title()} Path
X: %{{x:.3f}}
Y: %{{y:.3f}}
Z: %{{z:.3f}}', opacity=0.7 )) fig.update_layout( title={ 'text': "🌌 Universal Interspecies Communication Manifold", 'x': 0.5, 'xanchor': 'center' }, scene=dict( xaxis_title='Manifold Dimension 1', yaxis_title='Manifold Dimension 2', zaxis_title='Manifold Dimension 3', camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)), bgcolor='rgba(0,0,0,0)', aspectmode='cube' ), margin=dict(l=0, r=0, b=0, t=60) ) return fig def create_holography_plot(z, phi, resolution, wavelength): """Create holographic field visualization.""" field_data = generate_holographic_field(z, phi, resolution) if field_data is None: return go.Figure(layout={"title": "Insufficient data for holography"}) grid_x, grid_y, grid_phi = field_data mag_phi = np.abs(grid_phi) phase_phi = np.angle(grid_phi) def wavelength_to_rgb(wl): if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)' elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)' elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})' elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)' elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)' elif 620 <= wl <= 750: return 'rgb(255, 0, 0)' return 'rgb(255,255,255)' mid_color = wavelength_to_rgb(wavelength) custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']] fig = go.Figure() # Holographic surface fig.add_trace(go.Surface( x=grid_x, y=grid_y, z=mag_phi, surfacecolor=phase_phi, colorscale=custom_colorscale, cmin=-np.pi, cmax=np.pi, colorbar=dict(title='Phase'), name='Holographic Field', contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True) )) # Data points fig.add_trace(go.Scatter3d( x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.05, mode='markers', marker=dict(size=3, color='black', symbol='x'), name='Data Points' )) # Vector flow field if resolution >= 30: grad_y, grad_x = np.gradient(mag_phi) sample_rate = max(1, resolution // 15) fig.add_trace(go.Cone( x=grid_x[::sample_rate, ::sample_rate].flatten(), y=grid_y[::sample_rate, ::sample_rate].flatten(), z=mag_phi[::sample_rate, ::sample_rate].flatten(), u=-grad_x[::sample_rate, ::sample_rate].flatten(), v=-grad_y[::sample_rate, ::sample_rate].flatten(), w=np.full_like(mag_phi[::sample_rate, ::sample_rate].flatten(), -0.1), sizemode="absolute", sizeref=0.1, anchor="tip", colorscale='Greys', showscale=False, name='Vector Flow' )) fig.update_layout( title="Interactive Holographic Field Reconstruction", scene=dict( xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|" ), margin=dict(l=0, r=0, b=0, t=40) ) return fig def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, title1="Primary", title2="Comparison"): """Create side-by-side holographic visualizations.""" field_data1 = generate_holographic_field(z1, phi1, resolution) field_data2 = generate_holographic_field(z2, phi2, resolution) if field_data1 is None or field_data2 is None: return go.Figure(layout={"title": "Insufficient data for dual holography"}) grid_x1, grid_y1, grid_phi1 = field_data1 grid_x2, grid_y2, grid_phi2 = field_data2 mag_phi1, phase_phi1 = np.abs(grid_phi1), np.angle(grid_phi1) mag_phi2, phase_phi2 = np.abs(grid_phi2), np.angle(grid_phi2) def wavelength_to_rgb(wl): if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)' elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)' elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})' elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)' elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)' elif 620 <= wl <= 750: return 'rgb(255, 0, 0)' return 'rgb(255,255,255)' mid_color = wavelength_to_rgb(wavelength) custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']] fig = make_subplots( rows=1, cols=2, specs=[[{'type': 'surface'}, {'type': 'surface'}]], subplot_titles=[title1, title2] ) # Primary hologram fig.add_trace(go.Surface( x=grid_x1, y=grid_y1, z=mag_phi1, surfacecolor=phase_phi1, colorscale=custom_colorscale, cmin=-np.pi, cmax=np.pi, showscale=False, name=title1, contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True) ), row=1, col=1) # Comparison hologram fig.add_trace(go.Surface( x=grid_x2, y=grid_y2, z=mag_phi2, surfacecolor=phase_phi2, colorscale=custom_colorscale, cmin=-np.pi, cmax=np.pi, showscale=False, name=title2, contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True) ), row=1, col=2) # Add data points fig.add_trace(go.Scatter3d( x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05, mode='markers', marker=dict(size=3, color='black', symbol='x'), name=f'{title1} Points', showlegend=False ), row=1, col=1) fig.add_trace(go.Scatter3d( x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05, mode='markers', marker=dict(size=3, color='black', symbol='x'), name=f'{title2} Points', showlegend=False ), row=1, col=2) fig.update_layout( title="Side-by-Side Cross-Species Holographic Comparison", scene=dict( xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|", camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)) ), scene2=dict( xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|", camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)) ), margin=dict(l=0, r=0, b=0, t=60), height=600 ) return fig def create_diagnostic_plots(z, w): """Create diagnostic visualization.""" if z is None or w is None: return go.Figure(layout={"title": "Insufficient data for diagnostics"}) fig = go.Figure() fig.add_trace(go.Scatter( x=np.real(z), y=np.imag(z), mode='markers', marker=dict(size=5, color='blue', opacity=0.6), name='Aperture (z)' )) fig.add_trace(go.Scatter( x=np.real(w), y=np.imag(w), mode='markers', marker=dict(size=5, color='red', opacity=0.6, symbol='x'), name='Lens Response (w)' )) fig.update_layout( title="Diagnostic View: Aperture and Lens Response", xaxis_title="Real Part", yaxis_title="Imaginary Part", legend_title="Signal Stage", margin=dict(l=20, r=20, t=60, b=20) ) return fig def create_entropy_geometry_plot(phi: np.ndarray): """Create entropy analysis visualization.""" if phi is None or len(phi) < 2: return go.Figure(layout={"title": "Insufficient data for entropy analysis"}) magnitudes = np.abs(phi) phases = np.angle(phi) mag_hist, _ = np.histogram(magnitudes, bins='auto', density=True) phase_hist, _ = np.histogram(phases, bins='auto', density=True) mag_entropy = shannon_entropy(mag_hist + 1e-10) phase_entropy = shannon_entropy(phase_hist + 1e-10) fig = make_subplots(rows=1, cols=2, subplot_titles=( f"Magnitude Distribution (Entropy: {mag_entropy:.3f})", f"Phase Distribution (Entropy: {phase_entropy:.3f})" )) fig.add_trace(go.Histogram(x=magnitudes, name='Magnitude', nbinsx=50), row=1, col=1) fig.add_trace(go.Histogram(x=phases, name='Phase', nbinsx=50), row=1, col=2) fig.update_layout( title_text="Informational-Entropy Geometry", showlegend=False, bargap=0.1, margin=dict(l=20, r=20, t=60, b=20) ) return fig def create_2d_projection_plot(df_filtered, lens_selected, color_scheme): """Create 2D projection plot.""" alpha_col = f"diag_alpha_{lens_selected}" srl_col = f"diag_srl_{lens_selected}" # Color mapping if color_scheme == "Species": color_values = [1 if s == "Human" else 0 for s in df_filtered['source']] colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']] colorbar_title = "Species" elif color_scheme == "Emotion": unique_emotions = df_filtered['label'].unique() emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)} color_values = [emotion_map[label] for label in df_filtered['label']] colorscale = 'Viridis' colorbar_title = "Emotional State" else: color_values = df_filtered['cluster'].values colorscale = 'Plotly3' colorbar_title = "Cluster" fig = go.Figure() fig.add_trace(go.Scatter( x=df_filtered['x'], y=df_filtered['y'], mode='markers', marker=dict( size=8, color=color_values, colorscale=colorscale, showscale=True, colorbar=dict(title=colorbar_title), opacity=0.7, line=dict(width=0.5, color='rgba(50,50,50,0.5)') ), text=[f"{row['source']}: {row['label']}" for _, row in df_filtered.iterrows()], name='Communications' )) fig.update_layout( title="2D Manifold Projection", xaxis_title='Dimension 1', yaxis_title='Dimension 2', margin=dict(l=0, r=0, b=0, t=40) ) return fig def create_density_heatmap(df_filtered): """Create density heatmap.""" from scipy.stats import gaussian_kde if len(df_filtered) < 10: return go.Figure(layout={"title": "Insufficient data for density plot"}) x = df_filtered['x'].values y = df_filtered['y'].values # Create density estimation try: kde = gaussian_kde(np.vstack([x, y])) # Create grid x_range = np.linspace(x.min(), x.max(), 50) y_range = np.linspace(y.min(), y.max(), 50) X, Y = np.meshgrid(x_range, y_range) positions = np.vstack([X.ravel(), Y.ravel()]) Z = kde(positions).reshape(X.shape) fig = go.Figure(data=go.Heatmap( x=x_range, y=y_range, z=Z, colorscale='Viridis', showscale=True )) # Add scatter points fig.add_trace(go.Scatter( x=x, y=y, mode='markers', marker=dict(size=4, color='white', opacity=0.8), name='Data Points' )) fig.update_layout( title="Communication Density Landscape", xaxis_title='Dimension 1', yaxis_title='Dimension 2', margin=dict(l=0, r=0, b=0, t=40) ) return fig except: return go.Figure(layout={"title": "Could not create density plot"}) def create_feature_distributions(df_filtered, lens_selected): """Create feature distribution plots.""" alpha_col = f"diag_alpha_{lens_selected}" srl_col = f"diag_srl_{lens_selected}" fig = make_subplots( rows=2, cols=2, subplot_titles=( f"Alpha Distribution ({lens_selected})", f"SRL Distribution ({lens_selected})", "Species Distribution", "Emotion Distribution" ), specs=[[{"type": "histogram"}, {"type": "histogram"}], [{"type": "bar"}, {"type": "bar"}]] ) # Alpha distribution if alpha_col in df_filtered.columns: fig.add_trace(go.Histogram( x=df_filtered[alpha_col], name="Alpha", nbinsx=30, marker_color='lightblue' ), row=1, col=1) # SRL distribution if srl_col in df_filtered.columns: fig.add_trace(go.Histogram( x=df_filtered[srl_col], name="SRL", nbinsx=30, marker_color='lightgreen' ), row=1, col=2) # Species distribution species_counts = df_filtered['source'].value_counts() fig.add_trace(go.Bar( x=species_counts.index, y=species_counts.values, name="Species", marker_color=['#1f77b4', '#ff7f0e'] ), row=2, col=1) # Emotion distribution emotion_counts = df_filtered['label'].value_counts().head(10) fig.add_trace(go.Bar( x=emotion_counts.index, y=emotion_counts.values, name="Emotions", marker_color='lightcoral' ), row=2, col=2) fig.update_layout( title_text="Statistical Distributions", showlegend=False, margin=dict(l=0, r=0, b=0, t=60) ) return fig def create_cluster_analysis(df_filtered): """Create cluster analysis visualization.""" fig = make_subplots( rows=1, cols=2, subplot_titles=("Cluster Distribution", "Cluster Composition"), specs=[[{"type": "bar"}, {"type": "bar"}]] ) # Cluster distribution cluster_counts = df_filtered['cluster'].value_counts().sort_index() fig.add_trace(go.Bar( x=[f"C{i}" for i in cluster_counts.index], y=cluster_counts.values, name="Cluster Size", marker_color='skyblue' ), row=1, col=1) # Species composition per cluster cluster_species = df_filtered.groupby(['cluster', 'source']).size().unstack(fill_value=0) if len(cluster_species.columns) > 0: for species in cluster_species.columns: fig.add_trace(go.Bar( x=[f"C{i}" for i in cluster_species.index], y=cluster_species[species], name=species, marker_color='#1f77b4' if species == 'Human' else '#ff7f0e' ), row=1, col=2) fig.update_layout( title_text="Cluster Analysis", margin=dict(l=0, r=0, b=0, t=60) ) return fig def create_similarity_matrix(df_filtered, lens_selected): """Create species similarity matrix.""" alpha_col = f"diag_alpha_{lens_selected}" srl_col = f"diag_srl_{lens_selected}" # Calculate mean values for each species-emotion combination similarity_data = [] for species in df_filtered['source'].unique(): for emotion in df_filtered['label'].unique(): subset = df_filtered[(df_filtered['source'] == species) & (df_filtered['label'] == emotion)] if len(subset) > 0: alpha_mean = subset[alpha_col].mean() if alpha_col in subset.columns else 0 srl_mean = subset[srl_col].mean() if srl_col in subset.columns else 0 similarity_data.append({ 'species': species, 'emotion': emotion, 'alpha': alpha_mean, 'srl': srl_mean, 'combined': alpha_mean + srl_mean }) if not similarity_data: return go.Figure(layout={"title": "No data for similarity matrix"}) similarity_df = pd.DataFrame(similarity_data) pivot_table = similarity_df.pivot(index='emotion', columns='species', values='combined') fig = go.Figure(data=go.Heatmap( z=pivot_table.values, x=pivot_table.columns, y=pivot_table.index, colorscale='RdYlBu_r', showscale=True, colorbar=dict(title="Similarity Score") )) fig.update_layout( title="Cross-Species Similarity Matrix", margin=dict(l=0, r=0, b=0, t=40) ) return fig def calculate_live_statistics(df_filtered, lens_selected): """Calculate live statistics for the dataset.""" alpha_col = f"diag_alpha_{lens_selected}" srl_col = f"diag_srl_{lens_selected}" stats = { 'total_samples': len(df_filtered), 'species_counts': df_filtered['source'].value_counts().to_dict(), 'emotion_counts': len(df_filtered['label'].unique()), 'cluster_count': len(df_filtered['cluster'].unique()) } if alpha_col in df_filtered.columns: stats['alpha_mean'] = df_filtered[alpha_col].mean() stats['alpha_std'] = df_filtered[alpha_col].std() if srl_col in df_filtered.columns: stats['srl_mean'] = df_filtered[srl_col].mean() stats['srl_std'] = df_filtered[srl_col].std() # Format as HTML html_content = f"""

📊 Live Dataset Statistics

Total Samples: {stats['total_samples']}

Species: {' | '.join([f"{k}: {v}" for k, v in stats['species_counts'].items()])}

Emotions: {stats['emotion_counts']}

Clusters: {stats['cluster_count']}

""" if 'alpha_mean' in stats: html_content += f"""

Alpha ({lens_selected}): μ={stats['alpha_mean']:.3f}, σ={stats['alpha_std']:.3f}

""" if 'srl_mean' in stats: html_content += f"""

SRL ({lens_selected}): μ={stats['srl_mean']:.3f}, σ={stats['srl_std']:.3f}

""" html_content += "
" return html_content def update_manifold_visualization(species_selection, emotion_selection, lens_selection, alpha_min, alpha_max, srl_min, srl_max, point_size, show_boundary, show_trajectories, color_scheme): """Update all manifold visualizations with filters.""" df_filtered = df_combined.copy() if species_selection: df_filtered = df_filtered[df_filtered['source'].isin(species_selection)] if emotion_selection: df_filtered = df_filtered[df_filtered['label'].isin(emotion_selection)] alpha_col = f"diag_alpha_{lens_selection}" srl_col = f"diag_srl_{lens_selection}" if alpha_col in df_filtered.columns: df_filtered = df_filtered[ (df_filtered[alpha_col] >= alpha_min) & (df_filtered[alpha_col] <= alpha_max) ] if srl_col in df_filtered.columns: df_filtered = df_filtered[ (df_filtered[srl_col] >= srl_min) & (df_filtered[srl_col] <= srl_max) ] if len(df_filtered) == 0: empty_fig = go.Figure().add_annotation( text="No data points match the current filters", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False ) empty_stats = "

No data available

" return empty_fig, empty_fig, empty_fig, empty_fig, empty_fig, empty_fig, empty_stats # Create all visualizations main_plot = create_enhanced_manifold_plot( df_filtered, lens_selection, color_scheme, point_size, show_boundary, show_trajectories ) projection_2d = create_2d_projection_plot(df_filtered, lens_selection, color_scheme) density_plot = create_density_heatmap(df_filtered) feature_dists = create_feature_distributions(df_filtered, lens_selection) cluster_plot = create_cluster_analysis(df_filtered) similarity_plot = create_similarity_matrix(df_filtered, lens_selection) stats_html = calculate_live_statistics(df_filtered, lens_selection) return main_plot, projection_2d, density_plot, feature_dists, cluster_plot, similarity_plot, stats_html def export_filtered_data(species_selection, emotion_selection, lens_selection, alpha_min, alpha_max, srl_min, srl_max): """Export filtered dataset for analysis.""" import tempfile import json df_filtered = df_combined.copy() if species_selection: df_filtered = df_filtered[df_filtered['source'].isin(species_selection)] if emotion_selection: df_filtered = df_filtered[df_filtered['label'].isin(emotion_selection)] alpha_col = f"diag_alpha_{lens_selection}" srl_col = f"diag_srl_{lens_selection}" if alpha_col in df_filtered.columns: df_filtered = df_filtered[ (df_filtered[alpha_col] >= alpha_min) & (df_filtered[alpha_col] <= alpha_max) ] if srl_col in df_filtered.columns: df_filtered = df_filtered[ (df_filtered[srl_col] >= srl_min) & (df_filtered[srl_col] <= srl_max) ] if len(df_filtered) == 0: return "

❌ No data to export with current filters

" # Create export summary export_summary = { "export_timestamp": pd.Timestamp.now().isoformat(), "total_samples": len(df_filtered), "species_counts": df_filtered['source'].value_counts().to_dict(), "emotion_types": df_filtered['label'].unique().tolist(), "lens_used": lens_selection, "filters_applied": { "species": species_selection, "emotions": emotion_selection, "alpha_range": [alpha_min, alpha_max], "srl_range": [srl_min, srl_max] } } summary_html = f"""

✅ Export Ready

Samples: {export_summary['total_samples']}

Species: {', '.join([f"{k}({v})" for k, v in export_summary['species_counts'].items()])}

Emotions: {len(export_summary['emotion_types'])} types

Lens: {lens_selection}

Data ready for download via your browser's dev tools or notebook integration.

""" return summary_html # --------------------------------------------------------------- # Gradio Interface # --------------------------------------------------------------- with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) as demo: gr.Markdown(""" # 🌟 **CMT Holographic Information Geometry Engine v5.0** *Revolutionary interspecies communication analysis platform* **🚀 Enhanced Features:** - **🌌 Universal Manifold Explorer**: Multi-dimensional visualization suite with live statistics - **🔬 Interactive Holography**: Cross-species communication mapping with mathematical precision - **📊 Real-time Analytics**: Dynamic filtering, clustering, and similarity analysis - **🎨 Rich Visualizations**: 2D/3D plots, density heatmaps, feature distributions - **💾 Data Export**: Export filtered datasets for external analysis - **⚡ Auto-loading**: Manifold visualizations load automatically on startup --- **🎯 Goal**: Map the geometric structure of communication to reveal universal patterns across species """) with gr.Tabs(): with gr.TabItem("🌌 Universal Manifold Explorer"): gr.Markdown("# 🎯 **Interspecies Communication Map**") with gr.Row(): with gr.Column(scale=1): gr.Markdown("### 🔬 **Analysis Controls**") species_filter = gr.CheckboxGroup( label="Species Selection", choices=["Human", "Dog"], value=["Human", "Dog"] ) emotion_filter = gr.CheckboxGroup( label="Emotional States", choices=list(df_combined['label'].unique()), value=list(df_combined['label'].unique()) ) lens_selector = gr.Dropdown( label="Mathematical Lens", choices=["gamma", "zeta", "airy", "bessel"], value="gamma" ) with gr.Accordion("🎛️ Advanced Filters", open=False): alpha_min = gr.Slider(label="Alpha Min", minimum=0, maximum=5, value=0, step=0.1) alpha_max = gr.Slider(label="Alpha Max", minimum=0, maximum=5, value=5, step=0.1) srl_min = gr.Slider(label="SRL Min", minimum=0, maximum=100, value=0, step=1) srl_max = gr.Slider(label="SRL Max", minimum=0, maximum=100, value=100, step=1) with gr.Accordion("🎨 Visualization Options", open=True): point_size = gr.Slider(label="Point Size", minimum=2, maximum=15, value=6, step=1) show_species_boundary = gr.Checkbox(label="Show Species Boundary", value=True) show_trajectories = gr.Checkbox(label="Show Trajectories", value=False) color_scheme = gr.Dropdown( label="Color Scheme", choices=["Species", "Emotion", "CMT_Alpha", "CMT_SRL", "Cluster"], value="Species" ) with gr.Accordion("📊 Live Statistics", open=True): stats_html = gr.HTML(label="Dataset Statistics") similarity_matrix = gr.Plot(label="Species Similarity Matrix") with gr.Accordion("💾 Data Export", open=False): gr.Markdown("**Export filtered dataset for further analysis**") export_button = gr.Button("📥 Export Filtered Data", variant="secondary") export_status = gr.HTML("") with gr.Column(scale=3): manifold_plot = gr.Plot(label="Universal Communication Manifold") with gr.Row(): projection_2d = gr.Plot(label="2D Projection") density_plot = gr.Plot(label="Density Heatmap") with gr.Row(): feature_distributions = gr.Plot(label="Feature Distributions") cluster_analysis = gr.Plot(label="Cluster Analysis") # Wire up events manifold_inputs = [ species_filter, emotion_filter, lens_selector, alpha_min, alpha_max, srl_min, srl_max, point_size, show_species_boundary, show_trajectories, color_scheme ] manifold_outputs = [ manifold_plot, projection_2d, density_plot, feature_distributions, cluster_analysis, similarity_matrix, stats_html ] for component in manifold_inputs: component.change( update_manifold_visualization, inputs=manifold_inputs, outputs=manifold_outputs ) # Wire up export button export_button.click( export_filtered_data, inputs=[ species_filter, emotion_filter, lens_selector, alpha_min, alpha_max, srl_min, srl_max ], outputs=[export_status] ) with gr.TabItem("🔬 Interactive Holography"): with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Cross-Species Holography") species_dropdown = gr.Dropdown( label="Select Species", choices=["Dog", "Human"], value="Dog" ) dog_files = df_combined[df_combined["source"] == "Dog"]["filepath"].tolist() human_files = df_combined[df_combined["source"] == "Human"]["filepath"].tolist() primary_dropdown = gr.Dropdown( label="Primary File", choices=dog_files, value=dog_files[0] if dog_files else None ) neighbor_dropdown = gr.Dropdown( label="Cross-Species Neighbor", choices=human_files, value=human_files[0] if human_files else None ) holo_lens_dropdown = gr.Dropdown( label="CMT Lens", choices=["gamma", "zeta", "airy", "bessel"], value="gamma" ) holo_resolution_slider = gr.Slider( label="Field Resolution", minimum=20, maximum=100, step=5, value=40 ) holo_wavelength_slider = gr.Slider( label="Wavelength (nm)", minimum=380, maximum=750, step=5, value=550 ) primary_info_html = gr.HTML(label="Primary Info") neighbor_info_html = gr.HTML(label="Neighbor Info") with gr.Column(scale=2): dual_holography_plot = gr.Plot(label="Holographic Comparison") diagnostic_plot = gr.Plot(label="Diagnostic Analysis") entropy_plot = gr.Plot(label="Entropy Geometry") def update_cross_species_view(species, primary_file, neighbor_file, lens, resolution, wavelength): if not primary_file: empty_fig = go.Figure(layout={"title": "Select a primary file"}) return empty_fig, empty_fig, empty_fig, "", "" primary_row = df_combined[ (df_combined["filepath"] == primary_file) & (df_combined["source"] == species) ].iloc[0] if len(df_combined[ (df_combined["filepath"] == primary_file) & (df_combined["source"] == species) ]) > 0 else None if primary_row is None: empty_fig = go.Figure(layout={"title": "Primary file not found"}) return empty_fig, empty_fig, empty_fig, "", "" if not neighbor_file: neighbor_row = find_nearest_cross_species_neighbor(primary_row, df_combined) else: opposite_species = 'Human' if species == 'Dog' else 'Dog' neighbor_row = df_combined[ (df_combined["filepath"] == neighbor_file) & (df_combined["source"] == opposite_species) ].iloc[0] if len(df_combined[ (df_combined["filepath"] == neighbor_file) & (df_combined["source"] == opposite_species) ]) > 0 else None primary_cmt = get_cmt_data_from_csv(primary_row, lens) neighbor_cmt = get_cmt_data_from_csv(neighbor_row, lens) if neighbor_row is not None else None if primary_cmt and neighbor_cmt: primary_title = f"{species}: {primary_row.get('label', 'Unknown')}" neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}" dual_holo = create_dual_holography_plot( primary_cmt["z"], primary_cmt["phi"], neighbor_cmt["z"], neighbor_cmt["phi"], resolution, wavelength, primary_title, neighbor_title ) diag = create_diagnostic_plots(primary_cmt["z"], primary_cmt["w"]) entropy = create_entropy_geometry_plot(primary_cmt["phi"]) else: dual_holo = go.Figure(layout={"title": "Error processing data"}) diag = go.Figure(layout={"title": "Error processing data"}) entropy = go.Figure(layout={"title": "Error processing data"}) if primary_cmt: primary_info = f""" Primary: {primary_row['filepath']}
Species: {primary_row['source']}
Label: {primary_row.get('label', 'N/A')}
Alpha: {primary_cmt['alpha']:.4f}
SRL: {primary_cmt['srl']:.4f} """ else: primary_info = "" if neighbor_cmt and neighbor_row is not None: neighbor_info = f""" Neighbor: {neighbor_row['filepath']}
Species: {neighbor_row['source']}
Label: {neighbor_row.get('label', 'N/A')}
Alpha: {neighbor_cmt['alpha']:.4f}
SRL: {neighbor_cmt['srl']:.4f} """ else: neighbor_info = "" return dual_holo, diag, entropy, primary_info, neighbor_info def update_dropdowns_on_species_change(species): species_files = df_combined[df_combined["source"] == species]["filepath"].tolist() opposite_species = 'Human' if species == 'Dog' else 'Dog' neighbor_files = df_combined[df_combined["source"] == opposite_species]["filepath"].tolist() return ( gr.Dropdown(choices=species_files, value=species_files[0] if species_files else ""), gr.Dropdown(choices=neighbor_files, value=neighbor_files[0] if neighbor_files else "") ) species_dropdown.change( update_dropdowns_on_species_change, inputs=[species_dropdown], outputs=[primary_dropdown, neighbor_dropdown] ) cross_species_inputs = [ species_dropdown, primary_dropdown, neighbor_dropdown, holo_lens_dropdown, holo_resolution_slider, holo_wavelength_slider ] cross_species_outputs = [ dual_holography_plot, diagnostic_plot, entropy_plot, primary_info_html, neighbor_info_html ] for input_component in cross_species_inputs: input_component.change( update_cross_species_view, inputs=cross_species_inputs, outputs=cross_species_outputs ) # Auto-load manifold visualizations on startup demo.load( update_manifold_visualization, inputs=[ gr.State(["Human", "Dog"]), # species_filter default gr.State(list(df_combined['label'].unique())), # emotion_filter default gr.State("gamma"), # lens_selector default gr.State(0), # alpha_min default gr.State(5), # alpha_max default gr.State(0), # srl_min default gr.State(100), # srl_max default gr.State(6), # point_size default gr.State(True), # show_species_boundary default gr.State(False), # show_trajectories default gr.State("Species") # color_scheme default ], outputs=manifold_outputs ) print("✅ CMT Holographic Visualization Suite Ready!") if __name__ == "__main__": demo.launch(share=False, debug=False)