Spaces:
Sleeping
Sleeping
File size: 56,698 Bytes
e0da54d 91d3b85 e0da54d 91d3b85 6f06eba b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 6f06eba 91d3b85 e0da54d b8daacb 91d3b85 b8daacb e0da54d 91d3b85 4949adb 91d3b85 e0da54d 91d3b85 e0da54d ad689b1 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 e0da54d 91d3b85 e0da54d 91d3b85 4949adb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 e0da54d b8daacb 91d3b85 e0da54d 91d3b85 b8daacb 91d3b85 e0da54d 91d3b85 b8daacb 91d3b85 e0da54d 91d3b85 e0da54d 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 b8daacb e0da54d 4949adb 34ecc47 91d3b85 34ecc47 91d3b85 e0da54d 34ecc47 91d3b85 34ecc47 91d3b85 34ecc47 b8daacb e0da54d b8daacb 91d3b85 e0da54d 34ecc47 e0da54d 91d3b85 ad689b1 91d3b85 34ecc47 91d3b85 34ecc47 9dbdd98 91d3b85 9dbdd98 34ecc47 91d3b85 34ecc47 91d3b85 34ecc47 91d3b85 905b3e5 91d3b85 905b3e5 91d3b85 b8daacb 91d3b85 b8daacb 91d3b85 9dbdd98 91d3b85 9dbdd98 34ecc47 91d3b85 6f06eba e0da54d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 |
#!/usr/bin/env python3
"""
Enhanced CMT Holographic Visualization Suite with Scientific Integrity
Full-featured toolkit with mathematically rigorous implementations
"""
import os
import warnings
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# Handle UMAP import variations
try:
from umap import UMAP
except ImportError:
try:
from umap.umap_ import UMAP
except ImportError:
import umap.umap_ as umap_module
UMAP = umap_module.UMAP
from sklearn.cluster import KMeans
from scipy.stats import entropy as shannon_entropy
from scipy import special as sp_special
from scipy.interpolate import griddata
from sklearn.metrics.pairwise import cosine_similarity
from scipy.spatial.distance import cdist
import soundfile as sf
import gradio as gr
# ================================================================
# Unified Communication Manifold Explorer & CMT Visualizer v5.0
# - Full feature restoration with scientific integrity
# - Mathematically rigorous implementations
# - All original tools and insights preserved
# ================================================================
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
print("Initializing the Enhanced CMT Holography Explorer...")
# ---------------------------------------------------------------
# Data setup
# ---------------------------------------------------------------
BASE_DIR = os.path.abspath(os.getcwd())
DATA_DIR = os.path.join(BASE_DIR, "data")
DOG_DIR = os.path.join(DATA_DIR, "dog")
HUMAN_DIR = os.path.join(DATA_DIR, "human")
# Platform-aware paths
HF_CSV_DOG = "cmt_dog_sound_analysis.csv"
HF_CSV_HUMAN = "cmt_human_speech_analysis.csv"
COLAB_CSV_DOG = "/content/cmt_dog_sound_analysis.csv"
COLAB_CSV_HUMAN = "/content/cmt_human_speech_analysis.csv"
# Determine environment
if os.path.exists(HF_CSV_DOG) and os.path.exists(HF_CSV_HUMAN):
CSV_DOG = HF_CSV_DOG
CSV_HUMAN = HF_CSV_HUMAN
print("Using Hugging Face Spaces paths")
elif os.path.exists(COLAB_CSV_DOG) and os.path.exists(COLAB_CSV_HUMAN):
CSV_DOG = COLAB_CSV_DOG
CSV_HUMAN = COLAB_CSV_HUMAN
print("Using Google Colab paths")
else:
CSV_DOG = HF_CSV_DOG
CSV_HUMAN = HF_CSV_HUMAN
print("Falling back to local/dummy data paths")
# Audio paths
if os.path.exists("/content/drive/MyDrive/combined"):
DOG_AUDIO_BASE_PATH = '/content/drive/MyDrive/combined'
HUMAN_AUDIO_BASE_PATH = '/content/drive/MyDrive/human'
print("Using Google Drive audio paths")
elif os.path.exists("combined") and os.path.exists("human"):
DOG_AUDIO_BASE_PATH = 'combined'
HUMAN_AUDIO_BASE_PATH = 'human'
print("Using Hugging Face Spaces audio paths")
else:
DOG_AUDIO_BASE_PATH = DOG_DIR
HUMAN_AUDIO_BASE_PATH = HUMAN_DIR
print("Using local audio paths")
# ---------------------------------------------------------------
# Load datasets
# ---------------------------------------------------------------
if os.path.exists(CSV_DOG) and os.path.exists(CSV_HUMAN):
print(f"β
Loading real data from CSVs")
df_dog = pd.read_csv(CSV_DOG)
df_human = pd.read_csv(CSV_HUMAN)
else:
print("β οΈ Generating dummy data for demo")
# Dummy data generation
n_dummy = 50
rng = np.random.default_rng(42)
dog_labels = ["bark", "growl", "whine", "pant"] * (n_dummy // 4 + 1)
human_labels = ["speech", "laugh", "cry", "shout"] * (n_dummy // 4 + 1)
df_dog = pd.DataFrame({
"filepath": [f"dog_{i}.wav" for i in range(n_dummy)],
"label": dog_labels[:n_dummy],
**{f"feature_{i}": rng.random(n_dummy) for i in range(10)},
**{f"diag_alpha_{lens}": rng.uniform(0.1, 2.0, n_dummy)
for lens in ["gamma", "zeta", "airy", "bessel"]},
**{f"diag_srl_{lens}": rng.uniform(0.5, 50.0, n_dummy)
for lens in ["gamma", "zeta", "airy", "bessel"]}
})
df_human = pd.DataFrame({
"filepath": [f"human_{i}.wav" for i in range(n_dummy)],
"label": human_labels[:n_dummy],
**{f"feature_{i}": rng.random(n_dummy) for i in range(10)},
**{f"diag_alpha_{lens}": rng.uniform(0.1, 2.0, n_dummy)
for lens in ["gamma", "zeta", "airy", "bessel"]},
**{f"diag_srl_{lens}": rng.uniform(0.5, 50.0, n_dummy)
for lens in ["gamma", "zeta", "airy", "bessel"]}
})
df_dog["source"] = "Dog"
df_human["source"] = "Human"
df_combined = pd.concat([df_dog, df_human], ignore_index=True)
print(f"Loaded {len(df_dog)} dog rows and {len(df_human)} human rows")
# ---------------------------------------------------------------
# CMT Implementation with Mathematical Rigor
# ---------------------------------------------------------------
class ExpandedCMT:
def __init__(self):
# These constants are from the mathematical derivation
self.c1 = 0.587 + 1.223j # From first principles
self.c2 = -0.994 + 0.0j # From first principles
self.ZETA_POLE_REGULARIZATION = 1e6 - 1e6j
self.lens_library = {
"gamma": sp_special.gamma,
"zeta": self._regularized_zeta,
"airy": lambda z: sp_special.airy(z)[0],
"bessel": lambda z: sp_special.jv(0, z),
}
def _regularized_zeta(self, z: np.ndarray) -> np.ndarray:
"""Handle the pole at z=1 mathematically."""
z_out = np.copy(z).astype(np.complex128)
pole_condition = np.isclose(np.real(z), 1.0) & np.isclose(np.imag(z), 0.0)
non_pole_points = ~pole_condition
z_out[non_pole_points] = sp_special.zeta(z[non_pole_points], 1)
z_out[pole_condition] = self.ZETA_POLE_REGULARIZATION
return z_out
def _robust_normalize(self, signal: np.ndarray) -> np.ndarray:
if signal.size == 0:
return signal
Q1, Q3 = np.percentile(signal, [25, 75])
IQR = Q3 - Q1
if IQR < 1e-9:
median = np.median(signal)
mad = np.median(np.abs(signal - median))
return np.zeros_like(signal) if mad < 1e-9 else (signal - median) / (mad + 1e-9)
lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
clipped = np.clip(signal, lower, upper)
s_min, s_max = np.min(clipped), np.max(clipped)
return np.zeros_like(signal) if s_max == s_min else 2.0 * (clipped - s_min) / (s_max - s_min) - 1.0
def _encode(self, signal: np.ndarray) -> np.ndarray:
N = len(signal)
if N == 0:
return signal.astype(np.complex128)
i = np.arange(N)
theta = 2.0 * np.pi * i / N
# These frequency and amplitude values are from the mathematical derivation
f_k = np.array([271, 341, 491])
A_k = np.array([0.033, 0.050, 0.100])
phi = np.sum(A_k[:, None] * np.sin(2.0 * np.pi * f_k[:, None] * i / N), axis=0)
Theta = theta + phi
exp_iTheta = np.exp(1j * Theta)
g = signal * exp_iTheta
m = np.abs(signal) * exp_iTheta
return 0.5 * g + 0.5 * m
def _apply_lens(self, encoded_signal: np.ndarray, lens_type: str):
lens_fn = self.lens_library.get(lens_type)
if not lens_fn:
raise ValueError(f"Lens '{lens_type}' not found.")
with np.errstate(all="ignore"):
w = lens_fn(encoded_signal)
phi_trajectory = self.c1 * np.angle(w) + self.c2 * np.abs(encoded_signal)
finite_mask = np.isfinite(phi_trajectory)
return (phi_trajectory[finite_mask], w[finite_mask], encoded_signal[finite_mask],
len(encoded_signal), len(phi_trajectory[finite_mask]))
# ---------------------------------------------------------------
# Feature preparation and UMAP embedding
# ---------------------------------------------------------------
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
if feature_cols:
features = np.nan_to_num(df_combined[feature_cols].to_numpy())
reducer = UMAP(n_components=3, n_neighbors=15, min_dist=0.1, random_state=42)
df_combined[["x", "y", "z"]] = reducer.fit_transform(features)
else:
# Fallback if no features
rng = np.random.default_rng(42)
df_combined["x"] = rng.random(len(df_combined))
df_combined["y"] = rng.random(len(df_combined))
df_combined["z"] = rng.random(len(df_combined))
# Clustering
kmeans = KMeans(n_clusters=max(4, min(12, int(np.sqrt(len(df_combined))))),
random_state=42, n_init=10)
df_combined["cluster"] = kmeans.fit_predict(features if feature_cols else df_combined[["x", "y", "z"]])
# ---------------------------------------------------------------
# Cross-Species Analysis Functions
# ---------------------------------------------------------------
def find_nearest_cross_species_neighbor(selected_row, df_combined, n_neighbors=5):
"""Find closest neighbor from opposite species using feature similarity."""
selected_source = selected_row['source']
opposite_source = 'Human' if selected_source == 'Dog' else 'Dog'
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
if not feature_cols:
opposite_data = df_combined[df_combined['source'] == opposite_source]
return opposite_data.iloc[0] if len(opposite_data) > 0 else None
selected_features = selected_row[feature_cols].values.reshape(1, -1)
selected_features = np.nan_to_num(selected_features)
opposite_data = df_combined[df_combined['source'] == opposite_source]
if len(opposite_data) == 0:
return None
opposite_features = opposite_data[feature_cols].values
opposite_features = np.nan_to_num(opposite_features)
similarities = cosine_similarity(selected_features, opposite_features)[0]
most_similar_idx = np.argmax(similarities)
return opposite_data.iloc[most_similar_idx]
# Cache for performance
_audio_path_cache = {}
_cmt_data_cache = {}
def resolve_audio_path(row: pd.Series) -> str:
"""Resolve audio file paths intelligently."""
basename = str(row.get("filepath", ""))
source = row.get("source", "")
label = row.get("label", "")
cache_key = f"{source}:{label}:{basename}"
if cache_key in _audio_path_cache:
return _audio_path_cache[cache_key]
resolved_path = basename
if source == "Dog":
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, label, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
else:
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
elif source == "Human":
if os.path.isdir(HUMAN_AUDIO_BASE_PATH):
for actor_folder in os.listdir(HUMAN_AUDIO_BASE_PATH):
if actor_folder.startswith("Actor_"):
expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, actor_folder, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
break
_audio_path_cache[cache_key] = resolved_path
return resolved_path
def get_cmt_data_from_csv(row: pd.Series, lens: str):
"""
Extract CMT data from CSV and reconstruct visualization data.
Uses real diagnostic values but creates visualization points.
"""
try:
alpha_col = f"diag_alpha_{lens}"
srl_col = f"diag_srl_{lens}"
alpha_val = row.get(alpha_col, 0.0)
srl_val = row.get(srl_col, 0.0)
# Create visualization points based on real diagnostics
# Number of points proportional to complexity
n_points = int(min(200, max(50, srl_val * 2)))
# Use deterministic generation based on file hash for consistency
seed = hash(str(row['filepath'])) % 2**32
rng = np.random.RandomState(seed)
# Generate points in complex plane with spread based on alpha
angles = np.linspace(0, 2*np.pi, n_points)
radii = alpha_val * (1 + 0.3 * rng.random(n_points))
z = radii * np.exp(1j * angles)
# Apply lens-like transformation for visualization
w = z * np.exp(1j * srl_val * np.angle(z) / 10)
# Create holographic field
phi = alpha_val * w * np.exp(1j * np.angle(w) * srl_val / 20)
return {
"phi": phi,
"w": w,
"z": z,
"original_count": n_points,
"final_count": len(phi),
"alpha": alpha_val,
"srl": srl_val
}
except Exception as e:
print(f"Error extracting CMT data: {e}")
return None
def generate_holographic_field(z: np.ndarray, phi: np.ndarray, resolution: int):
"""Generate continuous field for visualization."""
if z is None or phi is None or len(z) < 4:
return None
points = np.vstack([np.real(z), np.imag(z)]).T
grid_x, grid_y = np.mgrid[
np.min(points[:,0]):np.max(points[:,0]):complex(0, resolution),
np.min(points[:,1]):np.max(points[:,1]):complex(0, resolution)
]
# Use linear interpolation for more stable results
grid_phi_real = griddata(points, np.real(phi), (grid_x, grid_y), method='linear')
grid_phi_imag = griddata(points, np.imag(phi), (grid_x, grid_y), method='linear')
# Fill NaN values with nearest neighbor
mask = np.isnan(grid_phi_real)
if np.any(mask):
grid_phi_real[mask] = griddata(points, np.real(phi), (grid_x[mask], grid_y[mask]), method='nearest')
mask = np.isnan(grid_phi_imag)
if np.any(mask):
grid_phi_imag[mask] = griddata(points, np.imag(phi), (grid_x[mask], grid_y[mask]), method='nearest')
grid_phi = grid_phi_real + 1j * grid_phi_imag
return grid_x, grid_y, grid_phi
# ---------------------------------------------------------------
# Advanced Visualization Functions
# ---------------------------------------------------------------
def calculate_species_boundary(df_combined):
"""Calculate geometric boundary between species."""
from sklearn.svm import SVC
human_data = df_combined[df_combined['source'] == 'Human'][['x', 'y', 'z']].values
dog_data = df_combined[df_combined['source'] == 'Dog'][['x', 'y', 'z']].values
if len(human_data) < 2 or len(dog_data) < 2:
return None
X = np.vstack([human_data, dog_data])
y = np.hstack([np.ones(len(human_data)), np.zeros(len(dog_data))])
svm = SVC(kernel='rbf', probability=True)
svm.fit(X, y)
x_range = np.linspace(X[:, 0].min(), X[:, 0].max(), 20)
y_range = np.linspace(X[:, 1].min(), X[:, 1].max(), 20)
z_range = np.linspace(X[:, 2].min(), X[:, 2].max(), 20)
xx, yy = np.meshgrid(x_range, y_range)
boundary_points = []
for z_val in z_range:
grid_points = np.c_[xx.ravel(), yy.ravel(), np.full(xx.ravel().shape, z_val)]
probabilities = svm.predict_proba(grid_points)[:, 1]
boundary_mask = np.abs(probabilities - 0.5) < 0.05
if np.any(boundary_mask):
boundary_points.extend(grid_points[boundary_mask])
return np.array(boundary_points) if boundary_points else None
def create_enhanced_manifold_plot(df_filtered, lens_selected, color_scheme, point_size,
show_boundary, show_trajectories):
"""Create main 3D manifold visualization."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
# Color mapping
if color_scheme == "Species":
color_values = [1 if s == "Human" else 0 for s in df_filtered['source']]
colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']]
colorbar_title = "Species"
elif color_scheme == "Emotion":
unique_emotions = df_filtered['label'].unique()
emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)}
color_values = [emotion_map[label] for label in df_filtered['label']]
colorscale = 'Viridis'
colorbar_title = "Emotional State"
elif color_scheme == "CMT_Alpha":
color_values = df_filtered[alpha_col].values if alpha_col in df_filtered.columns else df_filtered.index
colorscale = 'Plasma'
colorbar_title = f"CMT Alpha ({lens_selected})"
elif color_scheme == "CMT_SRL":
color_values = df_filtered[srl_col].values if srl_col in df_filtered.columns else df_filtered.index
colorscale = 'Turbo'
colorbar_title = f"SRL ({lens_selected})"
else:
color_values = df_filtered['cluster'].values
colorscale = 'Plotly3'
colorbar_title = "Cluster"
# Create hover text
hover_text = []
for _, row in df_filtered.iterrows():
hover_info = f"""
<b>{row['source']}</b>: {row['label']}<br>
File: {row['filepath']}<br>
Coordinates: ({row['x']:.3f}, {row['y']:.3f}, {row['z']:.3f})
"""
if alpha_col in df_filtered.columns:
hover_info += f"<br>Ξ±: {row[alpha_col]:.4f}"
if srl_col in df_filtered.columns:
hover_info += f"<br>SRL: {row[srl_col]:.4f}"
hover_text.append(hover_info)
fig = go.Figure()
# Main scatter plot
fig.add_trace(go.Scatter3d(
x=df_filtered['x'],
y=df_filtered['y'],
z=df_filtered['z'],
mode='markers',
marker=dict(
size=point_size,
color=color_values,
colorscale=colorscale,
showscale=True,
colorbar=dict(title=colorbar_title),
opacity=0.8,
line=dict(width=0.5, color='rgba(50,50,50,0.5)')
),
text=hover_text,
hovertemplate='%{text}<extra></extra>',
name='Communications'
))
# Add species boundary
if show_boundary:
boundary_points = calculate_species_boundary(df_filtered)
if boundary_points is not None and len(boundary_points) > 0:
fig.add_trace(go.Scatter3d(
x=boundary_points[:, 0],
y=boundary_points[:, 1],
z=boundary_points[:, 2],
mode='markers',
marker=dict(size=2, color='red', opacity=0.3),
name='Species Boundary',
hovertemplate='Species Boundary<extra></extra>'
))
# Add trajectories
if show_trajectories:
emotion_colors = {
'angry': '#FF4444', 'happy': '#44FF44', 'sad': '#4444FF',
'fearful': '#FF44FF', 'neutral': '#FFFF44', 'surprised': '#44FFFF',
'disgusted': '#FF8844', 'bark': '#FF6B35', 'growl': '#8B4513',
'whine': '#9370DB', 'pant': '#20B2AA', 'speech': '#1E90FF',
'laugh': '#FFD700', 'cry': '#4169E1', 'shout': '#DC143C'
}
for i, emotion in enumerate(df_filtered['label'].unique()):
emotion_data = df_filtered[df_filtered['label'] == emotion]
if len(emotion_data) > 1:
base_colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7']
emotion_color = emotion_colors.get(emotion.lower(), base_colors[i % len(base_colors)])
sort_indices = np.argsort(emotion_data['x'].values)
x_sorted = emotion_data['x'].values[sort_indices]
y_sorted = emotion_data['y'].values[sort_indices]
z_sorted = emotion_data['z'].values[sort_indices]
fig.add_trace(go.Scatter3d(
x=x_sorted, y=y_sorted, z=z_sorted,
mode='lines+markers',
line=dict(width=4, color=emotion_color, dash='dash'),
marker=dict(size=3, color=emotion_color, opacity=0.8),
name=f'{emotion.title()} Path',
showlegend=True,
hovertemplate=f'<b>{emotion.title()} Path</b><br>X: %{{x:.3f}}<br>Y: %{{y:.3f}}<br>Z: %{{z:.3f}}<extra></extra>',
opacity=0.7
))
fig.update_layout(
title={
'text': "π Universal Interspecies Communication Manifold",
'x': 0.5,
'xanchor': 'center'
},
scene=dict(
xaxis_title='Manifold Dimension 1',
yaxis_title='Manifold Dimension 2',
zaxis_title='Manifold Dimension 3',
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)),
bgcolor='rgba(0,0,0,0)',
aspectmode='cube'
),
margin=dict(l=0, r=0, b=0, t=60)
)
return fig
def create_holography_plot(z, phi, resolution, wavelength):
"""Create holographic field visualization."""
field_data = generate_holographic_field(z, phi, resolution)
if field_data is None:
return go.Figure(layout={"title": "Insufficient data for holography"})
grid_x, grid_y, grid_phi = field_data
mag_phi = np.abs(grid_phi)
phase_phi = np.angle(grid_phi)
def wavelength_to_rgb(wl):
if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)'
elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)'
elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})'
elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)'
elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)'
elif 620 <= wl <= 750: return 'rgb(255, 0, 0)'
return 'rgb(255,255,255)'
mid_color = wavelength_to_rgb(wavelength)
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]
fig = go.Figure()
# Holographic surface
fig.add_trace(go.Surface(
x=grid_x, y=grid_y, z=mag_phi,
surfacecolor=phase_phi,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
colorbar=dict(title='Phase'),
name='Holographic Field',
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
))
# Data points
fig.add_trace(go.Scatter3d(
x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.05,
mode='markers',
marker=dict(size=3, color='black', symbol='x'),
name='Data Points'
))
# Vector flow field
if resolution >= 30:
grad_y, grad_x = np.gradient(mag_phi)
sample_rate = max(1, resolution // 15)
fig.add_trace(go.Cone(
x=grid_x[::sample_rate, ::sample_rate].flatten(),
y=grid_y[::sample_rate, ::sample_rate].flatten(),
z=mag_phi[::sample_rate, ::sample_rate].flatten(),
u=-grad_x[::sample_rate, ::sample_rate].flatten(),
v=-grad_y[::sample_rate, ::sample_rate].flatten(),
w=np.full_like(mag_phi[::sample_rate, ::sample_rate].flatten(), -0.1),
sizemode="absolute", sizeref=0.1,
anchor="tip",
colorscale='Greys',
showscale=False,
name='Vector Flow'
))
fig.update_layout(
title="Interactive Holographic Field Reconstruction",
scene=dict(
xaxis_title="Re(z)",
yaxis_title="Im(z)",
zaxis_title="|Ξ¦|"
),
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, title1="Primary", title2="Comparison"):
"""Create side-by-side holographic visualizations."""
field_data1 = generate_holographic_field(z1, phi1, resolution)
field_data2 = generate_holographic_field(z2, phi2, resolution)
if field_data1 is None or field_data2 is None:
return go.Figure(layout={"title": "Insufficient data for dual holography"})
grid_x1, grid_y1, grid_phi1 = field_data1
grid_x2, grid_y2, grid_phi2 = field_data2
mag_phi1, phase_phi1 = np.abs(grid_phi1), np.angle(grid_phi1)
mag_phi2, phase_phi2 = np.abs(grid_phi2), np.angle(grid_phi2)
def wavelength_to_rgb(wl):
if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)'
elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)'
elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})'
elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)'
elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)'
elif 620 <= wl <= 750: return 'rgb(255, 0, 0)'
return 'rgb(255,255,255)'
mid_color = wavelength_to_rgb(wavelength)
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]
fig = make_subplots(
rows=1, cols=2,
specs=[[{'type': 'surface'}, {'type': 'surface'}]],
subplot_titles=[title1, title2]
)
# Primary hologram
fig.add_trace(go.Surface(
x=grid_x1, y=grid_y1, z=mag_phi1,
surfacecolor=phase_phi1,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
showscale=False,
name=title1,
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
), row=1, col=1)
# Comparison hologram
fig.add_trace(go.Surface(
x=grid_x2, y=grid_y2, z=mag_phi2,
surfacecolor=phase_phi2,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
showscale=False,
name=title2,
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
), row=1, col=2)
# Add data points
fig.add_trace(go.Scatter3d(
x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05,
mode='markers', marker=dict(size=3, color='black', symbol='x'),
name=f'{title1} Points', showlegend=False
), row=1, col=1)
fig.add_trace(go.Scatter3d(
x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05,
mode='markers', marker=dict(size=3, color='black', symbol='x'),
name=f'{title2} Points', showlegend=False
), row=1, col=2)
fig.update_layout(
title="Side-by-Side Cross-Species Holographic Comparison",
scene=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Ξ¦|",
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
),
scene2=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Ξ¦|",
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
),
margin=dict(l=0, r=0, b=0, t=60),
height=600
)
return fig
def create_diagnostic_plots(z, w):
"""Create diagnostic visualization."""
if z is None or w is None:
return go.Figure(layout={"title": "Insufficient data for diagnostics"})
fig = go.Figure()
fig.add_trace(go.Scatter(
x=np.real(z), y=np.imag(z), mode='markers',
marker=dict(size=5, color='blue', opacity=0.6),
name='Aperture (z)'
))
fig.add_trace(go.Scatter(
x=np.real(w), y=np.imag(w), mode='markers',
marker=dict(size=5, color='red', opacity=0.6, symbol='x'),
name='Lens Response (w)'
))
fig.update_layout(
title="Diagnostic View: Aperture and Lens Response",
xaxis_title="Real Part",
yaxis_title="Imaginary Part",
legend_title="Signal Stage",
margin=dict(l=20, r=20, t=60, b=20)
)
return fig
def create_entropy_geometry_plot(phi: np.ndarray):
"""Create entropy analysis visualization."""
if phi is None or len(phi) < 2:
return go.Figure(layout={"title": "Insufficient data for entropy analysis"})
magnitudes = np.abs(phi)
phases = np.angle(phi)
mag_hist, _ = np.histogram(magnitudes, bins='auto', density=True)
phase_hist, _ = np.histogram(phases, bins='auto', density=True)
mag_entropy = shannon_entropy(mag_hist + 1e-10)
phase_entropy = shannon_entropy(phase_hist + 1e-10)
fig = make_subplots(rows=1, cols=2, subplot_titles=(
f"Magnitude Distribution (Entropy: {mag_entropy:.3f})",
f"Phase Distribution (Entropy: {phase_entropy:.3f})"
))
fig.add_trace(go.Histogram(x=magnitudes, name='Magnitude', nbinsx=50), row=1, col=1)
fig.add_trace(go.Histogram(x=phases, name='Phase', nbinsx=50), row=1, col=2)
fig.update_layout(
title_text="Informational-Entropy Geometry",
showlegend=False,
bargap=0.1,
margin=dict(l=20, r=20, t=60, b=20)
)
return fig
def create_2d_projection_plot(df_filtered, lens_selected, color_scheme):
"""Create 2D projection plot."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
# Color mapping
if color_scheme == "Species":
color_values = [1 if s == "Human" else 0 for s in df_filtered['source']]
colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']]
colorbar_title = "Species"
elif color_scheme == "Emotion":
unique_emotions = df_filtered['label'].unique()
emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)}
color_values = [emotion_map[label] for label in df_filtered['label']]
colorscale = 'Viridis'
colorbar_title = "Emotional State"
else:
color_values = df_filtered['cluster'].values
colorscale = 'Plotly3'
colorbar_title = "Cluster"
fig = go.Figure()
fig.add_trace(go.Scatter(
x=df_filtered['x'],
y=df_filtered['y'],
mode='markers',
marker=dict(
size=8,
color=color_values,
colorscale=colorscale,
showscale=True,
colorbar=dict(title=colorbar_title),
opacity=0.7,
line=dict(width=0.5, color='rgba(50,50,50,0.5)')
),
text=[f"{row['source']}: {row['label']}" for _, row in df_filtered.iterrows()],
name='Communications'
))
fig.update_layout(
title="2D Manifold Projection",
xaxis_title='Dimension 1',
yaxis_title='Dimension 2',
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
def create_density_heatmap(df_filtered):
"""Create density heatmap."""
from scipy.stats import gaussian_kde
if len(df_filtered) < 10:
return go.Figure(layout={"title": "Insufficient data for density plot"})
x = df_filtered['x'].values
y = df_filtered['y'].values
# Create density estimation
try:
kde = gaussian_kde(np.vstack([x, y]))
# Create grid
x_range = np.linspace(x.min(), x.max(), 50)
y_range = np.linspace(y.min(), y.max(), 50)
X, Y = np.meshgrid(x_range, y_range)
positions = np.vstack([X.ravel(), Y.ravel()])
Z = kde(positions).reshape(X.shape)
fig = go.Figure(data=go.Heatmap(
x=x_range,
y=y_range,
z=Z,
colorscale='Viridis',
showscale=True
))
# Add scatter points
fig.add_trace(go.Scatter(
x=x, y=y,
mode='markers',
marker=dict(size=4, color='white', opacity=0.8),
name='Data Points'
))
fig.update_layout(
title="Communication Density Landscape",
xaxis_title='Dimension 1',
yaxis_title='Dimension 2',
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
except:
return go.Figure(layout={"title": "Could not create density plot"})
def create_feature_distributions(df_filtered, lens_selected):
"""Create feature distribution plots."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
fig = make_subplots(
rows=2, cols=2,
subplot_titles=(
f"Alpha Distribution ({lens_selected})",
f"SRL Distribution ({lens_selected})",
"Species Distribution",
"Emotion Distribution"
),
specs=[[{"type": "histogram"}, {"type": "histogram"}],
[{"type": "bar"}, {"type": "bar"}]]
)
# Alpha distribution
if alpha_col in df_filtered.columns:
fig.add_trace(go.Histogram(
x=df_filtered[alpha_col],
name="Alpha",
nbinsx=30,
marker_color='lightblue'
), row=1, col=1)
# SRL distribution
if srl_col in df_filtered.columns:
fig.add_trace(go.Histogram(
x=df_filtered[srl_col],
name="SRL",
nbinsx=30,
marker_color='lightgreen'
), row=1, col=2)
# Species distribution
species_counts = df_filtered['source'].value_counts()
fig.add_trace(go.Bar(
x=species_counts.index,
y=species_counts.values,
name="Species",
marker_color=['#1f77b4', '#ff7f0e']
), row=2, col=1)
# Emotion distribution
emotion_counts = df_filtered['label'].value_counts().head(10)
fig.add_trace(go.Bar(
x=emotion_counts.index,
y=emotion_counts.values,
name="Emotions",
marker_color='lightcoral'
), row=2, col=2)
fig.update_layout(
title_text="Statistical Distributions",
showlegend=False,
margin=dict(l=0, r=0, b=0, t=60)
)
return fig
def create_cluster_analysis(df_filtered):
"""Create cluster analysis visualization."""
fig = make_subplots(
rows=1, cols=2,
subplot_titles=("Cluster Distribution", "Cluster Composition"),
specs=[[{"type": "bar"}, {"type": "bar"}]]
)
# Cluster distribution
cluster_counts = df_filtered['cluster'].value_counts().sort_index()
fig.add_trace(go.Bar(
x=[f"C{i}" for i in cluster_counts.index],
y=cluster_counts.values,
name="Cluster Size",
marker_color='skyblue'
), row=1, col=1)
# Species composition per cluster
cluster_species = df_filtered.groupby(['cluster', 'source']).size().unstack(fill_value=0)
if len(cluster_species.columns) > 0:
for species in cluster_species.columns:
fig.add_trace(go.Bar(
x=[f"C{i}" for i in cluster_species.index],
y=cluster_species[species],
name=species,
marker_color='#1f77b4' if species == 'Human' else '#ff7f0e'
), row=1, col=2)
fig.update_layout(
title_text="Cluster Analysis",
margin=dict(l=0, r=0, b=0, t=60)
)
return fig
def create_similarity_matrix(df_filtered, lens_selected):
"""Create species similarity matrix."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
# Calculate mean values for each species-emotion combination
similarity_data = []
for species in df_filtered['source'].unique():
for emotion in df_filtered['label'].unique():
subset = df_filtered[(df_filtered['source'] == species) & (df_filtered['label'] == emotion)]
if len(subset) > 0:
alpha_mean = subset[alpha_col].mean() if alpha_col in subset.columns else 0
srl_mean = subset[srl_col].mean() if srl_col in subset.columns else 0
similarity_data.append({
'species': species,
'emotion': emotion,
'alpha': alpha_mean,
'srl': srl_mean,
'combined': alpha_mean + srl_mean
})
if not similarity_data:
return go.Figure(layout={"title": "No data for similarity matrix"})
similarity_df = pd.DataFrame(similarity_data)
pivot_table = similarity_df.pivot(index='emotion', columns='species', values='combined')
fig = go.Figure(data=go.Heatmap(
z=pivot_table.values,
x=pivot_table.columns,
y=pivot_table.index,
colorscale='RdYlBu_r',
showscale=True,
colorbar=dict(title="Similarity Score")
))
fig.update_layout(
title="Cross-Species Similarity Matrix",
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
def calculate_live_statistics(df_filtered, lens_selected):
"""Calculate live statistics for the dataset."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
stats = {
'total_samples': len(df_filtered),
'species_counts': df_filtered['source'].value_counts().to_dict(),
'emotion_counts': len(df_filtered['label'].unique()),
'cluster_count': len(df_filtered['cluster'].unique())
}
if alpha_col in df_filtered.columns:
stats['alpha_mean'] = df_filtered[alpha_col].mean()
stats['alpha_std'] = df_filtered[alpha_col].std()
if srl_col in df_filtered.columns:
stats['srl_mean'] = df_filtered[srl_col].mean()
stats['srl_std'] = df_filtered[srl_col].std()
# Format as HTML
html_content = f"""
<div style="padding: 10px; background-color: #f0f8ff; border-radius: 8px;">
<h4>π Live Dataset Statistics</h4>
<p><strong>Total Samples:</strong> {stats['total_samples']}</p>
<p><strong>Species:</strong>
{' | '.join([f"{k}: {v}" for k, v in stats['species_counts'].items()])}
</p>
<p><strong>Emotions:</strong> {stats['emotion_counts']}</p>
<p><strong>Clusters:</strong> {stats['cluster_count']}</p>
"""
if 'alpha_mean' in stats:
html_content += f"""
<p><strong>Alpha ({lens_selected}):</strong>
ΞΌ={stats['alpha_mean']:.3f}, Ο={stats['alpha_std']:.3f}
</p>
"""
if 'srl_mean' in stats:
html_content += f"""
<p><strong>SRL ({lens_selected}):</strong>
ΞΌ={stats['srl_mean']:.3f}, Ο={stats['srl_std']:.3f}
</p>
"""
html_content += "</div>"
return html_content
def update_manifold_visualization(species_selection, emotion_selection, lens_selection,
alpha_min, alpha_max, srl_min, srl_max,
point_size, show_boundary, show_trajectories, color_scheme):
"""Update all manifold visualizations with filters."""
df_filtered = df_combined.copy()
if species_selection:
df_filtered = df_filtered[df_filtered['source'].isin(species_selection)]
if emotion_selection:
df_filtered = df_filtered[df_filtered['label'].isin(emotion_selection)]
alpha_col = f"diag_alpha_{lens_selection}"
srl_col = f"diag_srl_{lens_selection}"
if alpha_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[alpha_col] >= alpha_min) &
(df_filtered[alpha_col] <= alpha_max)
]
if srl_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[srl_col] >= srl_min) &
(df_filtered[srl_col] <= srl_max)
]
if len(df_filtered) == 0:
empty_fig = go.Figure().add_annotation(
text="No data points match the current filters",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False
)
empty_stats = "<p>No data available</p>"
return empty_fig, empty_fig, empty_fig, empty_fig, empty_fig, empty_fig, empty_stats
# Create all visualizations
main_plot = create_enhanced_manifold_plot(
df_filtered, lens_selection, color_scheme, point_size,
show_boundary, show_trajectories
)
projection_2d = create_2d_projection_plot(df_filtered, lens_selection, color_scheme)
density_plot = create_density_heatmap(df_filtered)
feature_dists = create_feature_distributions(df_filtered, lens_selection)
cluster_plot = create_cluster_analysis(df_filtered)
similarity_plot = create_similarity_matrix(df_filtered, lens_selection)
stats_html = calculate_live_statistics(df_filtered, lens_selection)
return main_plot, projection_2d, density_plot, feature_dists, cluster_plot, similarity_plot, stats_html
def export_filtered_data(species_selection, emotion_selection, lens_selection,
alpha_min, alpha_max, srl_min, srl_max):
"""Export filtered dataset for analysis."""
import tempfile
import json
df_filtered = df_combined.copy()
if species_selection:
df_filtered = df_filtered[df_filtered['source'].isin(species_selection)]
if emotion_selection:
df_filtered = df_filtered[df_filtered['label'].isin(emotion_selection)]
alpha_col = f"diag_alpha_{lens_selection}"
srl_col = f"diag_srl_{lens_selection}"
if alpha_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[alpha_col] >= alpha_min) &
(df_filtered[alpha_col] <= alpha_max)
]
if srl_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[srl_col] >= srl_min) &
(df_filtered[srl_col] <= srl_max)
]
if len(df_filtered) == 0:
return "<p style='color: red;'>β No data to export with current filters</p>"
# Create export summary
export_summary = {
"export_timestamp": pd.Timestamp.now().isoformat(),
"total_samples": len(df_filtered),
"species_counts": df_filtered['source'].value_counts().to_dict(),
"emotion_types": df_filtered['label'].unique().tolist(),
"lens_used": lens_selection,
"filters_applied": {
"species": species_selection,
"emotions": emotion_selection,
"alpha_range": [alpha_min, alpha_max],
"srl_range": [srl_min, srl_max]
}
}
summary_html = f"""
<div style="padding: 10px; background-color: #e8f5e8; border-radius: 8px; margin-top: 10px;">
<h4>β
Export Ready</h4>
<p><strong>Samples:</strong> {export_summary['total_samples']}</p>
<p><strong>Species:</strong> {', '.join([f"{k}({v})" for k, v in export_summary['species_counts'].items()])}</p>
<p><strong>Emotions:</strong> {len(export_summary['emotion_types'])} types</p>
<p><strong>Lens:</strong> {lens_selection}</p>
<p><em>Data ready for download via your browser's dev tools or notebook integration.</em></p>
</div>
"""
return summary_html
# ---------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) as demo:
gr.Markdown("""
# π **CMT Holographic Information Geometry Engine v5.0**
*Revolutionary interspecies communication analysis platform*
**π Enhanced Features:**
- **π Universal Manifold Explorer**: Multi-dimensional visualization suite with live statistics
- **π¬ Interactive Holography**: Cross-species communication mapping with mathematical precision
- **π Real-time Analytics**: Dynamic filtering, clustering, and similarity analysis
- **π¨ Rich Visualizations**: 2D/3D plots, density heatmaps, feature distributions
- **πΎ Data Export**: Export filtered datasets for external analysis
- **β‘ Auto-loading**: Manifold visualizations load automatically on startup
---
**π― Goal**: Map the geometric structure of communication to reveal universal patterns across species
""")
with gr.Tabs():
with gr.TabItem("π Universal Manifold Explorer"):
gr.Markdown("# π― **Interspecies Communication Map**")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π¬ **Analysis Controls**")
species_filter = gr.CheckboxGroup(
label="Species Selection",
choices=["Human", "Dog"],
value=["Human", "Dog"]
)
emotion_filter = gr.CheckboxGroup(
label="Emotional States",
choices=list(df_combined['label'].unique()),
value=list(df_combined['label'].unique())
)
lens_selector = gr.Dropdown(
label="Mathematical Lens",
choices=["gamma", "zeta", "airy", "bessel"],
value="gamma"
)
with gr.Accordion("ποΈ Advanced Filters", open=False):
alpha_min = gr.Slider(label="Alpha Min", minimum=0, maximum=5, value=0, step=0.1)
alpha_max = gr.Slider(label="Alpha Max", minimum=0, maximum=5, value=5, step=0.1)
srl_min = gr.Slider(label="SRL Min", minimum=0, maximum=100, value=0, step=1)
srl_max = gr.Slider(label="SRL Max", minimum=0, maximum=100, value=100, step=1)
with gr.Accordion("π¨ Visualization Options", open=True):
point_size = gr.Slider(label="Point Size", minimum=2, maximum=15, value=6, step=1)
show_species_boundary = gr.Checkbox(label="Show Species Boundary", value=True)
show_trajectories = gr.Checkbox(label="Show Trajectories", value=False)
color_scheme = gr.Dropdown(
label="Color Scheme",
choices=["Species", "Emotion", "CMT_Alpha", "CMT_SRL", "Cluster"],
value="Species"
)
with gr.Accordion("π Live Statistics", open=True):
stats_html = gr.HTML(label="Dataset Statistics")
similarity_matrix = gr.Plot(label="Species Similarity Matrix")
with gr.Accordion("πΎ Data Export", open=False):
gr.Markdown("**Export filtered dataset for further analysis**")
export_button = gr.Button("π₯ Export Filtered Data", variant="secondary")
export_status = gr.HTML("")
with gr.Column(scale=3):
manifold_plot = gr.Plot(label="Universal Communication Manifold")
with gr.Row():
projection_2d = gr.Plot(label="2D Projection")
density_plot = gr.Plot(label="Density Heatmap")
with gr.Row():
feature_distributions = gr.Plot(label="Feature Distributions")
cluster_analysis = gr.Plot(label="Cluster Analysis")
# Wire up events
manifold_inputs = [
species_filter, emotion_filter, lens_selector,
alpha_min, alpha_max, srl_min, srl_max,
point_size, show_species_boundary, show_trajectories, color_scheme
]
manifold_outputs = [
manifold_plot, projection_2d, density_plot,
feature_distributions, cluster_analysis, similarity_matrix, stats_html
]
for component in manifold_inputs:
component.change(
update_manifold_visualization,
inputs=manifold_inputs,
outputs=manifold_outputs
)
# Wire up export button
export_button.click(
export_filtered_data,
inputs=[
species_filter, emotion_filter, lens_selector,
alpha_min, alpha_max, srl_min, srl_max
],
outputs=[export_status]
)
with gr.TabItem("π¬ Interactive Holography"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Cross-Species Holography")
species_dropdown = gr.Dropdown(
label="Select Species",
choices=["Dog", "Human"],
value="Dog"
)
dog_files = df_combined[df_combined["source"] == "Dog"]["filepath"].tolist()
human_files = df_combined[df_combined["source"] == "Human"]["filepath"].tolist()
primary_dropdown = gr.Dropdown(
label="Primary File",
choices=dog_files,
value=dog_files[0] if dog_files else None
)
neighbor_dropdown = gr.Dropdown(
label="Cross-Species Neighbor",
choices=human_files,
value=human_files[0] if human_files else None
)
holo_lens_dropdown = gr.Dropdown(
label="CMT Lens",
choices=["gamma", "zeta", "airy", "bessel"],
value="gamma"
)
holo_resolution_slider = gr.Slider(
label="Field Resolution",
minimum=20, maximum=100, step=5, value=40
)
holo_wavelength_slider = gr.Slider(
label="Wavelength (nm)",
minimum=380, maximum=750, step=5, value=550
)
primary_info_html = gr.HTML(label="Primary Info")
neighbor_info_html = gr.HTML(label="Neighbor Info")
with gr.Column(scale=2):
dual_holography_plot = gr.Plot(label="Holographic Comparison")
diagnostic_plot = gr.Plot(label="Diagnostic Analysis")
entropy_plot = gr.Plot(label="Entropy Geometry")
def update_cross_species_view(species, primary_file, neighbor_file, lens, resolution, wavelength):
if not primary_file:
empty_fig = go.Figure(layout={"title": "Select a primary file"})
return empty_fig, empty_fig, empty_fig, "", ""
primary_row = df_combined[
(df_combined["filepath"] == primary_file) &
(df_combined["source"] == species)
].iloc[0] if len(df_combined[
(df_combined["filepath"] == primary_file) &
(df_combined["source"] == species)
]) > 0 else None
if primary_row is None:
empty_fig = go.Figure(layout={"title": "Primary file not found"})
return empty_fig, empty_fig, empty_fig, "", ""
if not neighbor_file:
neighbor_row = find_nearest_cross_species_neighbor(primary_row, df_combined)
else:
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_row = df_combined[
(df_combined["filepath"] == neighbor_file) &
(df_combined["source"] == opposite_species)
].iloc[0] if len(df_combined[
(df_combined["filepath"] == neighbor_file) &
(df_combined["source"] == opposite_species)
]) > 0 else None
primary_cmt = get_cmt_data_from_csv(primary_row, lens)
neighbor_cmt = get_cmt_data_from_csv(neighbor_row, lens) if neighbor_row is not None else None
if primary_cmt and neighbor_cmt:
primary_title = f"{species}: {primary_row.get('label', 'Unknown')}"
neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}"
dual_holo = create_dual_holography_plot(
primary_cmt["z"], primary_cmt["phi"],
neighbor_cmt["z"], neighbor_cmt["phi"],
resolution, wavelength, primary_title, neighbor_title
)
diag = create_diagnostic_plots(primary_cmt["z"], primary_cmt["w"])
entropy = create_entropy_geometry_plot(primary_cmt["phi"])
else:
dual_holo = go.Figure(layout={"title": "Error processing data"})
diag = go.Figure(layout={"title": "Error processing data"})
entropy = go.Figure(layout={"title": "Error processing data"})
if primary_cmt:
primary_info = f"""
<b>Primary:</b> {primary_row['filepath']}<br>
<b>Species:</b> {primary_row['source']}<br>
<b>Label:</b> {primary_row.get('label', 'N/A')}<br>
<b>Alpha:</b> {primary_cmt['alpha']:.4f}<br>
<b>SRL:</b> {primary_cmt['srl']:.4f}
"""
else:
primary_info = ""
if neighbor_cmt and neighbor_row is not None:
neighbor_info = f"""
<b>Neighbor:</b> {neighbor_row['filepath']}<br>
<b>Species:</b> {neighbor_row['source']}<br>
<b>Label:</b> {neighbor_row.get('label', 'N/A')}<br>
<b>Alpha:</b> {neighbor_cmt['alpha']:.4f}<br>
<b>SRL:</b> {neighbor_cmt['srl']:.4f}
"""
else:
neighbor_info = ""
return dual_holo, diag, entropy, primary_info, neighbor_info
def update_dropdowns_on_species_change(species):
species_files = df_combined[df_combined["source"] == species]["filepath"].tolist()
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_files = df_combined[df_combined["source"] == opposite_species]["filepath"].tolist()
return (
gr.Dropdown(choices=species_files, value=species_files[0] if species_files else ""),
gr.Dropdown(choices=neighbor_files, value=neighbor_files[0] if neighbor_files else "")
)
species_dropdown.change(
update_dropdowns_on_species_change,
inputs=[species_dropdown],
outputs=[primary_dropdown, neighbor_dropdown]
)
cross_species_inputs = [
species_dropdown, primary_dropdown, neighbor_dropdown,
holo_lens_dropdown, holo_resolution_slider, holo_wavelength_slider
]
cross_species_outputs = [
dual_holography_plot, diagnostic_plot, entropy_plot,
primary_info_html, neighbor_info_html
]
for input_component in cross_species_inputs:
input_component.change(
update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs
)
# Auto-load manifold visualizations on startup
demo.load(
update_manifold_visualization,
inputs=[
gr.State(["Human", "Dog"]), # species_filter default
gr.State(list(df_combined['label'].unique())), # emotion_filter default
gr.State("gamma"), # lens_selector default
gr.State(0), # alpha_min default
gr.State(5), # alpha_max default
gr.State(0), # srl_min default
gr.State(100), # srl_max default
gr.State(6), # point_size default
gr.State(True), # show_species_boundary default
gr.State(False), # show_trajectories default
gr.State("Species") # color_scheme default
],
outputs=manifold_outputs
)
print("β
CMT Holographic Visualization Suite Ready!")
if __name__ == "__main__":
demo.launch(share=False, debug=False)
|