Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1020,8 +1020,145 @@ def create_diagnostic_plots(z, w):
|
|
1020 |
)
|
1021 |
return fig
|
1022 |
|
1023 |
-
def
|
1024 |
-
"""Creates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1025 |
field_data1 = generate_holographic_field(z1, phi1, resolution)
|
1026 |
field_data2 = generate_holographic_field(z2, phi2, resolution)
|
1027 |
|
@@ -1031,80 +1168,377 @@ def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, titl
|
|
1031 |
grid_x1, grid_y1, grid_phi1 = field_data1
|
1032 |
grid_x2, grid_y2, grid_phi2 = field_data2
|
1033 |
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
-
|
1041 |
-
|
1042 |
-
|
1043 |
-
|
1044 |
-
|
1045 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1046 |
|
1047 |
-
mid_color = wavelength_to_rgb(wavelength)
|
1048 |
-
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]
|
1049 |
-
|
1050 |
fig = make_subplots(
|
1051 |
rows=1, cols=2,
|
1052 |
specs=[[{'type': 'scene'}, {'type': 'scene'}]],
|
1053 |
-
subplot_titles=[title1, title2]
|
|
|
1054 |
)
|
1055 |
|
1056 |
-
#
|
1057 |
-
|
1058 |
-
|
1059 |
-
|
1060 |
-
|
1061 |
-
|
1062 |
-
|
1063 |
-
|
1064 |
-
|
1065 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1066 |
|
1067 |
-
# Right plot (Comparison)
|
1068 |
-
|
1069 |
-
|
1070 |
-
|
1071 |
-
|
1072 |
-
|
1073 |
-
|
1074 |
-
|
1075 |
-
|
1076 |
-
|
|
|
|
|
|
|
|
|
1077 |
|
1078 |
-
#
|
1079 |
if z1 is not None and phi1 is not None:
|
|
|
1080 |
fig.add_trace(go.Scatter3d(
|
1081 |
x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05,
|
1082 |
-
mode='markers',
|
1083 |
-
|
|
|
|
|
|
|
|
|
1084 |
), row=1, col=1)
|
1085 |
|
1086 |
if z2 is not None and phi2 is not None:
|
|
|
1087 |
fig.add_trace(go.Scatter3d(
|
1088 |
x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05,
|
1089 |
-
mode='markers',
|
1090 |
-
|
|
|
|
|
|
|
|
|
1091 |
), row=1, col=2)
|
1092 |
|
|
|
1093 |
fig.update_layout(
|
1094 |
-
title=
|
|
|
|
|
|
|
|
|
1095 |
scene=dict(
|
1096 |
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|ฮฆ|",
|
1097 |
-
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
|
|
|
|
|
1098 |
),
|
1099 |
scene2=dict(
|
1100 |
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|ฮฆ|",
|
1101 |
-
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1102 |
),
|
1103 |
margin=dict(l=0, r=0, b=0, t=60),
|
1104 |
-
|
1105 |
)
|
1106 |
return fig
|
1107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1108 |
def create_dual_diagnostic_plots(z1, w1, z2, w2, title1="Primary", title2="Comparison"):
|
1109 |
"""Creates side-by-side diagnostic plots for cross-species comparison."""
|
1110 |
fig = make_subplots(
|
@@ -1390,58 +1824,260 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) a
|
|
1390 |
outputs=manifold_outputs
|
1391 |
)
|
1392 |
|
1393 |
-
with gr.TabItem("Interactive Holography"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1394 |
with gr.Row():
|
1395 |
with gr.Column(scale=1):
|
1396 |
-
|
1397 |
-
|
1398 |
-
|
1399 |
-
|
1400 |
-
|
1401 |
-
|
1402 |
-
|
1403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1404 |
|
1405 |
-
#
|
1406 |
-
|
1407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1408 |
|
1409 |
-
|
1410 |
-
|
1411 |
-
|
1412 |
-
|
1413 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1414 |
|
1415 |
-
#
|
1416 |
-
|
1417 |
-
|
1418 |
-
|
1419 |
-
|
1420 |
-
|
1421 |
-
|
|
|
|
|
|
|
|
|
1422 |
|
1423 |
-
|
1424 |
-
|
1425 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1426 |
|
1427 |
-
#
|
1428 |
-
|
1429 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1430 |
|
1431 |
-
#
|
1432 |
-
|
1433 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1434 |
|
1435 |
-
|
1436 |
-
|
1437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1438 |
|
1439 |
def update_file_choices(species):
|
1440 |
"""Update the primary file dropdown based on selected species."""
|
1441 |
species_files = df_combined[df_combined["source"] == species]["filepath"].astype(str).tolist()
|
1442 |
return species_files
|
1443 |
|
1444 |
-
def
|
|
|
|
|
|
|
|
|
1445 |
if not primary_file:
|
1446 |
empty_fig = go.Figure(layout={"title": "Please select a primary file."})
|
1447 |
return empty_fig, empty_fig, "", "", None, None
|
@@ -1488,25 +2124,44 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) a
|
|
1488 |
primary_fp = resolve_audio_path(primary_row)
|
1489 |
neighbor_fp = resolve_audio_path(neighbor_row) if neighbor_row is not None else None
|
1490 |
|
1491 |
-
# Create visualizations
|
1492 |
if primary_cmt and neighbor_cmt:
|
1493 |
primary_title = f"{species}: {primary_row.get('label', 'Unknown')}"
|
1494 |
neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}"
|
1495 |
|
|
|
1496 |
dual_holo_fig = create_dual_holography_plot(
|
1497 |
primary_cmt["z"], primary_cmt["phi"],
|
1498 |
neighbor_cmt["z"], neighbor_cmt["phi"],
|
1499 |
-
resolution, wavelength,
|
|
|
|
|
1500 |
)
|
1501 |
|
|
|
1502 |
dual_diag_fig = create_dual_diagnostic_plots(
|
1503 |
primary_cmt["z"], primary_cmt["w"],
|
1504 |
neighbor_cmt["z"], neighbor_cmt["w"],
|
1505 |
primary_title, neighbor_title
|
1506 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1507 |
else:
|
1508 |
dual_holo_fig = go.Figure(layout={"title": "Error processing audio files"})
|
1509 |
dual_diag_fig = go.Figure(layout={"title": "Error processing audio files"})
|
|
|
|
|
1510 |
|
1511 |
# Build info strings with CMT diagnostic values
|
1512 |
primary_info = f"""
|
@@ -1537,7 +2192,99 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) a
|
|
1537 |
primary_audio = primary_fp if primary_fp and os.path.exists(primary_fp) else None
|
1538 |
neighbor_audio = neighbor_fp if neighbor_row is not None and neighbor_fp and os.path.exists(neighbor_fp) else None
|
1539 |
|
1540 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1541 |
primary_audio, neighbor_audio)
|
1542 |
|
1543 |
# Event handlers
|
@@ -1561,28 +2308,30 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) a
|
|
1561 |
outputs=[primary_dropdown, neighbor_dropdown]
|
1562 |
)
|
1563 |
|
1564 |
-
|
1565 |
-
|
1566 |
-
|
1567 |
-
|
1568 |
-
|
1569 |
-
|
1570 |
-
|
1571 |
-
|
1572 |
-
|
1573 |
-
|
1574 |
-
|
1575 |
-
|
1576 |
-
|
1577 |
-
|
1578 |
-
|
1579 |
-
|
1580 |
-
|
1581 |
-
|
1582 |
-
|
1583 |
-
|
1584 |
-
|
1585 |
-
|
|
|
|
|
1586 |
|
1587 |
if __name__ == "__main__":
|
1588 |
demo.launch(share=True, debug=True)
|
|
|
1020 |
)
|
1021 |
return fig
|
1022 |
|
1023 |
+
def create_enhanced_holography_plot(z, phi, resolution, wavelength, field_depth=5, interference_strength=1.0, colormap="Wavelength", title="Holographic Field"):
|
1024 |
+
"""Creates an enhanced holographic visualization with advanced mathematical features."""
|
1025 |
+
field_data = generate_holographic_field(z, phi, resolution)
|
1026 |
+
if field_data is None:
|
1027 |
+
return go.Figure(layout={"title": "Insufficient data for enhanced holography"})
|
1028 |
+
|
1029 |
+
grid_x, grid_y, grid_phi = field_data
|
1030 |
+
mag_phi = np.abs(grid_phi) * interference_strength
|
1031 |
+
phase_phi = np.angle(grid_phi)
|
1032 |
+
|
1033 |
+
# Enhanced wavelength to colorscale mapping with more sophisticated colors
|
1034 |
+
def wavelength_to_rgb_enhanced(wl):
|
1035 |
+
if 380 <= wl < 420: return f'rgb({int(255 * (420-wl)/40)}, 0, 255)' # Violet
|
1036 |
+
elif 420 <= wl < 440: return f'rgb(0, 0, 255)' # Blue
|
1037 |
+
elif 440 <= wl < 490: return f'rgb(0, {int(255 * (wl-440)/50)}, 255)' # Cyan
|
1038 |
+
elif 490 <= wl < 510: return f'rgb(0, 255, {int(255 * (510-wl)/20)})' # Green
|
1039 |
+
elif 510 <= wl < 580: return f'rgb({int(255 * (wl-510)/70)}, 255, 0)' # Yellow
|
1040 |
+
elif 580 <= wl < 645: return f'rgb(255, {int(255 * (645-wl)/65)}, 0)' # Orange
|
1041 |
+
elif 645 <= wl <= 750: return f'rgb(255, 0, 0)' # Red
|
1042 |
+
return 'rgb(255,255,255)'
|
1043 |
+
|
1044 |
+
# Choose colorscale based on mode
|
1045 |
+
if colormap == "Wavelength":
|
1046 |
+
mid_color = wavelength_to_rgb_enhanced(wavelength)
|
1047 |
+
custom_colorscale = [[0, 'rgb(10,0,20)'], [0.3, 'rgb(30,20,60)'], [0.5, mid_color],
|
1048 |
+
[0.7, 'rgb(255,200,150)'], [1, 'rgb(255,255,255)']]
|
1049 |
+
elif colormap == "Phase":
|
1050 |
+
custom_colorscale = 'hsv'
|
1051 |
+
elif colormap == "Magnitude":
|
1052 |
+
custom_colorscale = 'hot'
|
1053 |
+
elif colormap == "Interference":
|
1054 |
+
custom_colorscale = [[0, 'rgb(0,0,100)'], [0.25, 'rgb(0,100,200)'], [0.5, 'rgb(255,255,0)'],
|
1055 |
+
[0.75, 'rgb(255,100,0)'], [1, 'rgb(255,0,0)']]
|
1056 |
+
else: # Custom
|
1057 |
+
custom_colorscale = 'viridis'
|
1058 |
+
|
1059 |
+
fig = go.Figure()
|
1060 |
+
|
1061 |
+
# Multi-layer holographic surface with depth
|
1062 |
+
for depth_layer in range(field_depth):
|
1063 |
+
layer_alpha = 1.0 - (depth_layer * 0.15) # Fade deeper layers
|
1064 |
+
layer_offset = depth_layer * 0.1
|
1065 |
+
|
1066 |
+
fig.add_trace(go.Surface(
|
1067 |
+
x=grid_x, y=grid_y, z=mag_phi + layer_offset,
|
1068 |
+
surfacecolor=phase_phi if colormap == "Phase" else mag_phi,
|
1069 |
+
colorscale=custom_colorscale,
|
1070 |
+
opacity=layer_alpha,
|
1071 |
+
showscale=(depth_layer == 0), # Only show colorbar for top layer
|
1072 |
+
colorbar=dict(title='Holographic Field Intensity', x=1.02),
|
1073 |
+
name=f'Field Layer {depth_layer+1}',
|
1074 |
+
contours_z=dict(
|
1075 |
+
show=True,
|
1076 |
+
usecolormap=True,
|
1077 |
+
highlightcolor="rgba(255,255,255,0.8)",
|
1078 |
+
project_z=True,
|
1079 |
+
highlightwidth=2
|
1080 |
+
)
|
1081 |
+
))
|
1082 |
+
|
1083 |
+
# Enhanced data points with size based on magnitude
|
1084 |
+
point_sizes = np.abs(phi) * 5 + 2 # Dynamic sizing
|
1085 |
+
fig.add_trace(go.Scatter3d(
|
1086 |
+
x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.1,
|
1087 |
+
mode='markers',
|
1088 |
+
marker=dict(
|
1089 |
+
size=point_sizes,
|
1090 |
+
color=np.angle(phi),
|
1091 |
+
colorscale='rainbow',
|
1092 |
+
symbol='diamond',
|
1093 |
+
opacity=0.9,
|
1094 |
+
line=dict(width=1, color='white')
|
1095 |
+
),
|
1096 |
+
name='Signal Constellation',
|
1097 |
+
hovertemplate='<b>Signal Point</b><br>Re(z): %{x:.3f}<br>Im(z): %{y:.3f}<br>|ฯ|: %{z:.3f}<extra></extra>'
|
1098 |
+
))
|
1099 |
+
|
1100 |
+
# Enhanced vector flow field with adaptive density
|
1101 |
+
if resolution >= 40: # Only show for sufficient resolution
|
1102 |
+
grad_y, grad_x = np.gradient(mag_phi)
|
1103 |
+
sample_rate = max(1, resolution // 20) # Adaptive sampling
|
1104 |
+
|
1105 |
+
fig.add_trace(go.Cone(
|
1106 |
+
x=grid_x[::sample_rate, ::sample_rate].flatten(),
|
1107 |
+
y=grid_y[::sample_rate, ::sample_rate].flatten(),
|
1108 |
+
z=mag_phi[::sample_rate, ::sample_rate].flatten(),
|
1109 |
+
u=-grad_x[::sample_rate, ::sample_rate].flatten(),
|
1110 |
+
v=-grad_y[::sample_rate, ::sample_rate].flatten(),
|
1111 |
+
w=np.full_like(mag_phi[::sample_rate, ::sample_rate].flatten(), -0.05),
|
1112 |
+
sizemode="absolute",
|
1113 |
+
sizeref=0.08 * interference_strength,
|
1114 |
+
anchor="tip",
|
1115 |
+
colorscale='greys',
|
1116 |
+
showscale=False,
|
1117 |
+
opacity=0.6,
|
1118 |
+
name='Field Gradient'
|
1119 |
+
))
|
1120 |
+
|
1121 |
+
fig.update_layout(
|
1122 |
+
title={
|
1123 |
+
'text': f"๐ {title}<br><sub>Enhanced Holographic Field Reconstruction (ฮป={wavelength}nm)</sub>",
|
1124 |
+
'x': 0.5,
|
1125 |
+
'xanchor': 'center'
|
1126 |
+
},
|
1127 |
+
scene=dict(
|
1128 |
+
xaxis_title="Re(z) - Complex Embedding",
|
1129 |
+
yaxis_title="Im(z) - Phase Encoding",
|
1130 |
+
zaxis_title="|ฮฆ| - Holographic Intensity",
|
1131 |
+
camera=dict(eye=dict(x=1.8, y=1.8, z=1.5)),
|
1132 |
+
aspectmode='cube',
|
1133 |
+
bgcolor='rgba(5,5,15,1)'
|
1134 |
+
),
|
1135 |
+
margin=dict(l=0, r=0, b=0, t=80),
|
1136 |
+
paper_bgcolor='rgba(10,10,25,1)',
|
1137 |
+
plot_bgcolor='rgba(5,5,15,1)'
|
1138 |
+
)
|
1139 |
+
return fig
|
1140 |
+
|
1141 |
+
def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, field_depth=5,
|
1142 |
+
interference_strength=1.0, view_mode="Side-by-Side", colormap="Wavelength",
|
1143 |
+
title1="Primary", title2="Comparison"):
|
1144 |
+
"""Creates enhanced side-by-side holographic visualizations with multiple view modes."""
|
1145 |
+
|
1146 |
+
if view_mode == "Side-by-Side":
|
1147 |
+
return create_side_by_side_holography(z1, phi1, z2, phi2, resolution, wavelength,
|
1148 |
+
field_depth, interference_strength, colormap, title1, title2)
|
1149 |
+
elif view_mode == "Overlay":
|
1150 |
+
return create_overlay_holography(z1, phi1, z2, phi2, resolution, wavelength,
|
1151 |
+
field_depth, interference_strength, colormap, title1, title2)
|
1152 |
+
elif view_mode == "Difference":
|
1153 |
+
return create_difference_holography(z1, phi1, z2, phi2, resolution, wavelength,
|
1154 |
+
field_depth, interference_strength, colormap, title1, title2)
|
1155 |
+
else: # Animation
|
1156 |
+
return create_animated_holography(z1, phi1, z2, phi2, resolution, wavelength,
|
1157 |
+
field_depth, interference_strength, colormap, title1, title2)
|
1158 |
+
|
1159 |
+
def create_side_by_side_holography(z1, phi1, z2, phi2, resolution, wavelength, field_depth,
|
1160 |
+
interference_strength, colormap, title1, title2):
|
1161 |
+
"""Enhanced side-by-side comparison with mathematical precision."""
|
1162 |
field_data1 = generate_holographic_field(z1, phi1, resolution)
|
1163 |
field_data2 = generate_holographic_field(z2, phi2, resolution)
|
1164 |
|
|
|
1168 |
grid_x1, grid_y1, grid_phi1 = field_data1
|
1169 |
grid_x2, grid_y2, grid_phi2 = field_data2
|
1170 |
|
1171 |
+
# Enhanced color mapping
|
1172 |
+
def get_enhanced_colorscale(colormap, wavelength):
|
1173 |
+
if colormap == "Wavelength":
|
1174 |
+
# Sophisticated wavelength-based colors
|
1175 |
+
if 380 <= wavelength < 450:
|
1176 |
+
return [[0, 'rgb(20,0,60)'], [0.5, 'rgb(120,0,255)'], [1, 'rgb(200,150,255)']]
|
1177 |
+
elif 450 <= wavelength < 550:
|
1178 |
+
return [[0, 'rgb(0,20,60)'], [0.5, 'rgb(0,120,255)'], [1, 'rgb(150,200,255)']]
|
1179 |
+
elif 550 <= wavelength < 650:
|
1180 |
+
return [[0, 'rgb(0,60,20)'], [0.5, 'rgb(120,255,0)'], [1, 'rgb(200,255,150)']]
|
1181 |
+
else:
|
1182 |
+
return [[0, 'rgb(60,20,0)'], [0.5, 'rgb(255,120,0)'], [1, 'rgb(255,200,150)']]
|
1183 |
+
elif colormap == "Phase":
|
1184 |
+
return 'hsv'
|
1185 |
+
elif colormap == "Magnitude":
|
1186 |
+
return 'hot'
|
1187 |
+
elif colormap == "Interference":
|
1188 |
+
return [[0, 'rgb(0,0,100)'], [0.3, 'rgb(0,150,255)'], [0.6, 'rgb(255,255,0)'], [1, 'rgb(255,0,0)']]
|
1189 |
+
return 'viridis'
|
1190 |
+
|
1191 |
+
custom_colorscale = get_enhanced_colorscale(colormap, wavelength)
|
1192 |
|
|
|
|
|
|
|
1193 |
fig = make_subplots(
|
1194 |
rows=1, cols=2,
|
1195 |
specs=[[{'type': 'scene'}, {'type': 'scene'}]],
|
1196 |
+
subplot_titles=[f"๐ต {title1}", f"๐ {title2}"],
|
1197 |
+
horizontal_spacing=0.05
|
1198 |
)
|
1199 |
|
1200 |
+
# Enhanced processing for both fields
|
1201 |
+
mag_phi1 = np.abs(grid_phi1) * interference_strength
|
1202 |
+
mag_phi2 = np.abs(grid_phi2) * interference_strength
|
1203 |
+
phase_phi1 = np.angle(grid_phi1)
|
1204 |
+
phase_phi2 = np.angle(grid_phi2)
|
1205 |
+
|
1206 |
+
# Left plot (Primary) with multiple layers
|
1207 |
+
for layer in range(min(field_depth, 3)): # Limit for performance
|
1208 |
+
layer_alpha = 1.0 - (layer * 0.2)
|
1209 |
+
layer_offset = layer * 0.05
|
1210 |
+
|
1211 |
+
fig.add_trace(go.Surface(
|
1212 |
+
x=grid_x1, y=grid_y1, z=mag_phi1 + layer_offset,
|
1213 |
+
surfacecolor=phase_phi1 if colormap == "Phase" else mag_phi1,
|
1214 |
+
colorscale=custom_colorscale,
|
1215 |
+
opacity=layer_alpha,
|
1216 |
+
showscale=False,
|
1217 |
+
name=f'{title1} Layer {layer+1}',
|
1218 |
+
contours_z=dict(show=True, usecolormap=True, project_z=True)
|
1219 |
+
), row=1, col=1)
|
1220 |
|
1221 |
+
# Right plot (Comparison)
|
1222 |
+
for layer in range(min(field_depth, 3)):
|
1223 |
+
layer_alpha = 1.0 - (layer * 0.2)
|
1224 |
+
layer_offset = layer * 0.05
|
1225 |
+
|
1226 |
+
fig.add_trace(go.Surface(
|
1227 |
+
x=grid_x2, y=grid_y2, z=mag_phi2 + layer_offset,
|
1228 |
+
surfacecolor=phase_phi2 if colormap == "Phase" else mag_phi2,
|
1229 |
+
colorscale=custom_colorscale,
|
1230 |
+
opacity=layer_alpha,
|
1231 |
+
showscale=False,
|
1232 |
+
name=f'{title2} Layer {layer+1}',
|
1233 |
+
contours_z=dict(show=True, usecolormap=True, project_z=True)
|
1234 |
+
), row=1, col=2)
|
1235 |
|
1236 |
+
# Enhanced data points for both sides
|
1237 |
if z1 is not None and phi1 is not None:
|
1238 |
+
point_sizes1 = np.abs(phi1) * 3 + 1
|
1239 |
fig.add_trace(go.Scatter3d(
|
1240 |
x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05,
|
1241 |
+
mode='markers',
|
1242 |
+
marker=dict(size=point_sizes1, color=np.angle(phi1), colorscale='rainbow',
|
1243 |
+
symbol='diamond', opacity=0.8, line=dict(width=1, color='white')),
|
1244 |
+
name=f'{title1} Constellation',
|
1245 |
+
showlegend=False,
|
1246 |
+
hovertemplate=f'<b>{title1}</b><br>Re(z): %{{x:.3f}}<br>Im(z): %{{y:.3f}}<br>|ฯ|: %{{z:.3f}}<extra></extra>'
|
1247 |
), row=1, col=1)
|
1248 |
|
1249 |
if z2 is not None and phi2 is not None:
|
1250 |
+
point_sizes2 = np.abs(phi2) * 3 + 1
|
1251 |
fig.add_trace(go.Scatter3d(
|
1252 |
x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05,
|
1253 |
+
mode='markers',
|
1254 |
+
marker=dict(size=point_sizes2, color=np.angle(phi2), colorscale='rainbow',
|
1255 |
+
symbol='diamond', opacity=0.8, line=dict(width=1, color='white')),
|
1256 |
+
name=f'{title2} Constellation',
|
1257 |
+
showlegend=False,
|
1258 |
+
hovertemplate=f'<b>{title2}</b><br>Re(z): %{{x:.3f}}<br>Im(z): %{{y:.3f}}<br>|ฯ|: %{{z:.3f}}<extra></extra>'
|
1259 |
), row=1, col=2)
|
1260 |
|
1261 |
+
# Mathematical precision layout
|
1262 |
fig.update_layout(
|
1263 |
+
title={
|
1264 |
+
'text': "๐ Cross-Species Holographic Field Comparison<br><sub>Mathematical precision visualization of interspecies communication geometry</sub>",
|
1265 |
+
'x': 0.5,
|
1266 |
+
'xanchor': 'center'
|
1267 |
+
},
|
1268 |
scene=dict(
|
1269 |
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|ฮฆ|",
|
1270 |
+
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)),
|
1271 |
+
bgcolor='rgba(5,5,15,1)',
|
1272 |
+
aspectmode='cube'
|
1273 |
),
|
1274 |
scene2=dict(
|
1275 |
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|ฮฆ|",
|
1276 |
+
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)),
|
1277 |
+
bgcolor='rgba(5,5,15,1)',
|
1278 |
+
aspectmode='cube'
|
1279 |
+
),
|
1280 |
+
margin=dict(l=0, r=0, b=0, t=80),
|
1281 |
+
paper_bgcolor='rgba(10,10,25,1)',
|
1282 |
+
plot_bgcolor='rgba(5,5,15,1)'
|
1283 |
+
)
|
1284 |
+
return fig
|
1285 |
+
|
1286 |
+
def create_overlay_holography(z1, phi1, z2, phi2, resolution, wavelength, field_depth,
|
1287 |
+
interference_strength, colormap, title1, title2):
|
1288 |
+
"""Create overlaid holographic fields showing interference patterns."""
|
1289 |
+
field_data1 = generate_holographic_field(z1, phi1, resolution)
|
1290 |
+
field_data2 = generate_holographic_field(z2, phi2, resolution)
|
1291 |
+
|
1292 |
+
if field_data1 is None or field_data2 is None:
|
1293 |
+
return go.Figure(layout={"title": "Insufficient data for overlay holography"})
|
1294 |
+
|
1295 |
+
# Combine the fields for interference analysis
|
1296 |
+
grid_x1, grid_y1, grid_phi1 = field_data1
|
1297 |
+
grid_x2, grid_y2, grid_phi2 = field_data2
|
1298 |
+
|
1299 |
+
# Create interference pattern
|
1300 |
+
combined_field = grid_phi1 + grid_phi2 * 0.7 # Weighted combination
|
1301 |
+
interference_magnitude = np.abs(combined_field) * interference_strength
|
1302 |
+
interference_phase = np.angle(combined_field)
|
1303 |
+
|
1304 |
+
fig = go.Figure()
|
1305 |
+
|
1306 |
+
# Main interference surface
|
1307 |
+
fig.add_trace(go.Surface(
|
1308 |
+
x=grid_x1, y=grid_y1, z=interference_magnitude,
|
1309 |
+
surfacecolor=interference_phase,
|
1310 |
+
colorscale='rainbow',
|
1311 |
+
name='Interference Pattern',
|
1312 |
+
colorbar=dict(title='Phase Interference'),
|
1313 |
+
contours_z=dict(show=True, usecolormap=True, project_z=True)
|
1314 |
+
))
|
1315 |
+
|
1316 |
+
# Add both signal constellations with different symbols
|
1317 |
+
if z1 is not None and phi1 is not None:
|
1318 |
+
fig.add_trace(go.Scatter3d(
|
1319 |
+
x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.1,
|
1320 |
+
mode='markers',
|
1321 |
+
marker=dict(size=6, color='red', symbol='circle', opacity=0.8),
|
1322 |
+
name=title1
|
1323 |
+
))
|
1324 |
+
|
1325 |
+
if z2 is not None and phi2 is not None:
|
1326 |
+
fig.add_trace(go.Scatter3d(
|
1327 |
+
x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.1,
|
1328 |
+
mode='markers',
|
1329 |
+
marker=dict(size=6, color='blue', symbol='square', opacity=0.8),
|
1330 |
+
name=title2
|
1331 |
+
))
|
1332 |
+
|
1333 |
+
fig.update_layout(
|
1334 |
+
title=f"๐ Holographic Interference: {title1} โก {title2}",
|
1335 |
+
scene=dict(
|
1336 |
+
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="Interference |ฮฆ|",
|
1337 |
+
bgcolor='rgba(5,5,15,1)'
|
1338 |
),
|
1339 |
margin=dict(l=0, r=0, b=0, t=60),
|
1340 |
+
paper_bgcolor='rgba(10,10,25,1)'
|
1341 |
)
|
1342 |
return fig
|
1343 |
|
1344 |
+
def create_difference_holography(z1, phi1, z2, phi2, resolution, wavelength, field_depth,
|
1345 |
+
interference_strength, colormap, title1, title2):
|
1346 |
+
"""Show the mathematical difference between holographic fields."""
|
1347 |
+
field_data1 = generate_holographic_field(z1, phi1, resolution)
|
1348 |
+
field_data2 = generate_holographic_field(z2, phi2, resolution)
|
1349 |
+
|
1350 |
+
if field_data1 is None or field_data2 is None:
|
1351 |
+
return go.Figure(layout={"title": "Insufficient data for difference analysis"})
|
1352 |
+
|
1353 |
+
grid_x1, grid_y1, grid_phi1 = field_data1
|
1354 |
+
grid_x2, grid_y2, grid_phi2 = field_data2
|
1355 |
+
|
1356 |
+
# Calculate difference field
|
1357 |
+
difference_field = grid_phi1 - grid_phi2
|
1358 |
+
diff_magnitude = np.abs(difference_field)
|
1359 |
+
diff_phase = np.angle(difference_field)
|
1360 |
+
|
1361 |
+
fig = go.Figure()
|
1362 |
+
|
1363 |
+
# Difference surface
|
1364 |
+
fig.add_trace(go.Surface(
|
1365 |
+
x=grid_x1, y=grid_y1, z=diff_magnitude,
|
1366 |
+
surfacecolor=diff_phase,
|
1367 |
+
colorscale='RdBu',
|
1368 |
+
name='Field Difference',
|
1369 |
+
colorbar=dict(title='Difference Magnitude'),
|
1370 |
+
contours_z=dict(show=True, usecolormap=True, project_z=True)
|
1371 |
+
))
|
1372 |
+
|
1373 |
+
fig.update_layout(
|
1374 |
+
title=f"๐ Holographic Difference Analysis: {title1} - {title2}",
|
1375 |
+
scene=dict(
|
1376 |
+
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="Difference |ฮฆ|",
|
1377 |
+
bgcolor='rgba(15,5,5,1)'
|
1378 |
+
),
|
1379 |
+
margin=dict(l=0, r=0, b=0, t=60),
|
1380 |
+
paper_bgcolor='rgba(25,10,10,1)'
|
1381 |
+
)
|
1382 |
+
return fig
|
1383 |
+
|
1384 |
+
def create_animated_holography(z1, phi1, z2, phi2, resolution, wavelength, field_depth,
|
1385 |
+
interference_strength, colormap, title1, title2):
|
1386 |
+
"""Create animated transition between holographic fields."""
|
1387 |
+
# For now, return the overlay version with animation notation
|
1388 |
+
# Full animation would require Plotly animation frames
|
1389 |
+
fig = create_overlay_holography(z1, phi1, z2, phi2, resolution, wavelength,
|
1390 |
+
field_depth, interference_strength, colormap, title1, title2)
|
1391 |
+
|
1392 |
+
fig.update_layout(
|
1393 |
+
title=f"๐ฌ Animated Holographic Transition: {title1} โ {title2}<br><sub>Interactive transition between communication states</sub>"
|
1394 |
+
)
|
1395 |
+
return fig
|
1396 |
+
|
1397 |
+
def create_enhanced_entropy_plot(phi1, phi2, title1="Primary", title2="Comparison"):
|
1398 |
+
"""Creates enhanced information entropy geometry analysis."""
|
1399 |
+
if phi1 is None or phi2 is None or len(phi1) < 2 or len(phi2) < 2:
|
1400 |
+
return go.Figure(layout={"title": "Insufficient data for entropy analysis"})
|
1401 |
+
|
1402 |
+
# Calculate comprehensive entropy metrics
|
1403 |
+
def calculate_entropy_metrics(phi):
|
1404 |
+
magnitudes = np.abs(phi)
|
1405 |
+
phases = np.angle(phi)
|
1406 |
+
|
1407 |
+
# Shannon entropy
|
1408 |
+
mag_hist, _ = np.histogram(magnitudes, bins=20, density=True)
|
1409 |
+
phase_hist, _ = np.histogram(phases, bins=20, density=True)
|
1410 |
+
mag_entropy = shannon_entropy(mag_hist + 1e-12) # Avoid log(0)
|
1411 |
+
phase_entropy = shannon_entropy(phase_hist + 1e-12)
|
1412 |
+
|
1413 |
+
# Geometric entropy
|
1414 |
+
geometric_entropy = np.std(magnitudes) * np.std(phases)
|
1415 |
+
|
1416 |
+
# Complexity measures
|
1417 |
+
magnitude_complexity = np.var(magnitudes) / (np.mean(magnitudes) + 1e-12)
|
1418 |
+
phase_complexity = np.var(phases) / (np.pi**2 / 3) # Normalized by max variance
|
1419 |
+
|
1420 |
+
return {
|
1421 |
+
'mag_entropy': mag_entropy,
|
1422 |
+
'phase_entropy': phase_entropy,
|
1423 |
+
'geometric_entropy': geometric_entropy,
|
1424 |
+
'magnitude_complexity': magnitude_complexity,
|
1425 |
+
'phase_complexity': phase_complexity,
|
1426 |
+
'total_entropy': mag_entropy + phase_entropy
|
1427 |
+
}
|
1428 |
+
|
1429 |
+
metrics1 = calculate_entropy_metrics(phi1)
|
1430 |
+
metrics2 = calculate_entropy_metrics(phi2)
|
1431 |
+
|
1432 |
+
fig = make_subplots(
|
1433 |
+
rows=2, cols=3,
|
1434 |
+
subplot_titles=[
|
1435 |
+
f'{title1}: Magnitude Distribution', f'{title2}: Magnitude Distribution', 'Entropy Comparison',
|
1436 |
+
f'{title1}: Phase Distribution', f'{title2}: Phase Distribution', 'Complexity Analysis'
|
1437 |
+
],
|
1438 |
+
specs=[[{'type': 'xy'}, {'type': 'xy'}, {'type': 'xy'}],
|
1439 |
+
[{'type': 'xy'}, {'type': 'xy'}, {'type': 'xy'}]]
|
1440 |
+
)
|
1441 |
+
|
1442 |
+
# Magnitude distributions
|
1443 |
+
fig.add_trace(go.Histogram(x=np.abs(phi1), nbinsx=30, name=f'{title1} Magnitude',
|
1444 |
+
marker_color='rgba(255,100,100,0.7)'), row=1, col=1)
|
1445 |
+
fig.add_trace(go.Histogram(x=np.abs(phi2), nbinsx=30, name=f'{title2} Magnitude',
|
1446 |
+
marker_color='rgba(100,100,255,0.7)'), row=1, col=2)
|
1447 |
+
|
1448 |
+
# Phase distributions
|
1449 |
+
fig.add_trace(go.Histogram(x=np.angle(phi1), nbinsx=30, name=f'{title1} Phase',
|
1450 |
+
marker_color='rgba(255,150,100,0.7)'), row=2, col=1)
|
1451 |
+
fig.add_trace(go.Histogram(x=np.angle(phi2), nbinsx=30, name=f'{title2} Phase',
|
1452 |
+
marker_color='rgba(100,150,255,0.7)'), row=2, col=2)
|
1453 |
+
|
1454 |
+
# Entropy comparison
|
1455 |
+
entropy_categories = ['Magnitude', 'Phase', 'Geometric', 'Total']
|
1456 |
+
entropy_values1 = [metrics1['mag_entropy'], metrics1['phase_entropy'],
|
1457 |
+
metrics1['geometric_entropy'], metrics1['total_entropy']]
|
1458 |
+
entropy_values2 = [metrics2['mag_entropy'], metrics2['phase_entropy'],
|
1459 |
+
metrics2['geometric_entropy'], metrics2['total_entropy']]
|
1460 |
+
|
1461 |
+
fig.add_trace(go.Bar(x=entropy_categories, y=entropy_values1, name=title1,
|
1462 |
+
marker_color='rgba(255,100,100,0.8)'), row=1, col=3)
|
1463 |
+
fig.add_trace(go.Bar(x=entropy_categories, y=entropy_values2, name=title2,
|
1464 |
+
marker_color='rgba(100,100,255,0.8)'), row=1, col=3)
|
1465 |
+
|
1466 |
+
# Complexity analysis
|
1467 |
+
complexity_categories = ['Magnitude Complexity', 'Phase Complexity']
|
1468 |
+
complexity_values1 = [metrics1['magnitude_complexity'], metrics1['phase_complexity']]
|
1469 |
+
complexity_values2 = [metrics2['magnitude_complexity'], metrics2['phase_complexity']]
|
1470 |
+
|
1471 |
+
fig.add_trace(go.Bar(x=complexity_categories, y=complexity_values1, name=f'{title1} Complexity',
|
1472 |
+
marker_color='rgba(255,200,100,0.8)', showlegend=False), row=2, col=3)
|
1473 |
+
fig.add_trace(go.Bar(x=complexity_categories, y=complexity_values2, name=f'{title2} Complexity',
|
1474 |
+
marker_color='rgba(100,200,255,0.8)', showlegend=False), row=2, col=3)
|
1475 |
+
|
1476 |
+
fig.update_layout(
|
1477 |
+
title="๐ Enhanced Information Entropy Geometry Analysis",
|
1478 |
+
height=600,
|
1479 |
+
showlegend=True,
|
1480 |
+
paper_bgcolor='rgba(10,10,25,1)',
|
1481 |
+
plot_bgcolor='rgba(5,5,15,1)'
|
1482 |
+
)
|
1483 |
+
|
1484 |
+
return fig
|
1485 |
+
|
1486 |
+
def create_enhanced_phase_analysis(phi1, phi2, z1, z2, title1="Primary", title2="Comparison"):
|
1487 |
+
"""Creates comprehensive phase space analysis."""
|
1488 |
+
if phi1 is None or phi2 is None:
|
1489 |
+
return go.Figure(layout={"title": "Insufficient data for phase analysis"})
|
1490 |
+
|
1491 |
+
fig = make_subplots(
|
1492 |
+
rows=2, cols=2,
|
1493 |
+
subplot_titles=[
|
1494 |
+
'Complex Plane Trajectories', 'Phase Evolution',
|
1495 |
+
'Magnitude vs Phase', 'Cross-Correlation Analysis'
|
1496 |
+
],
|
1497 |
+
specs=[[{'type': 'xy'}, {'type': 'xy'}],
|
1498 |
+
[{'type': 'xy'}, {'type': 'xy'}]]
|
1499 |
+
)
|
1500 |
+
|
1501 |
+
# Complex plane trajectories
|
1502 |
+
fig.add_trace(go.Scatter(x=np.real(phi1), y=np.imag(phi1), mode='lines+markers',
|
1503 |
+
name=f'{title1} Trajectory', line=dict(color='red', width=2),
|
1504 |
+
marker=dict(size=4)), row=1, col=1)
|
1505 |
+
fig.add_trace(go.Scatter(x=np.real(phi2), y=np.imag(phi2), mode='lines+markers',
|
1506 |
+
name=f'{title2} Trajectory', line=dict(color='blue', width=2),
|
1507 |
+
marker=dict(size=4)), row=1, col=1)
|
1508 |
+
|
1509 |
+
# Phase evolution
|
1510 |
+
phases1 = np.angle(phi1)
|
1511 |
+
phases2 = np.angle(phi2)
|
1512 |
+
t1 = np.arange(len(phases1))
|
1513 |
+
t2 = np.arange(len(phases2))
|
1514 |
+
|
1515 |
+
fig.add_trace(go.Scatter(x=t1, y=phases1, mode='lines', name=f'{title1} Phase',
|
1516 |
+
line=dict(color='red', width=2)), row=1, col=2)
|
1517 |
+
fig.add_trace(go.Scatter(x=t2, y=phases2, mode='lines', name=f'{title2} Phase',
|
1518 |
+
line=dict(color='blue', width=2)), row=1, col=2)
|
1519 |
+
|
1520 |
+
# Magnitude vs Phase scatter
|
1521 |
+
fig.add_trace(go.Scatter(x=np.abs(phi1), y=phases1, mode='markers',
|
1522 |
+
name=f'{title1} Mag-Phase', marker=dict(color='red', size=6, opacity=0.7)), row=2, col=1)
|
1523 |
+
fig.add_trace(go.Scatter(x=np.abs(phi2), y=phases2, mode='markers',
|
1524 |
+
name=f'{title2} Mag-Phase', marker=dict(color='blue', size=6, opacity=0.7)), row=2, col=1)
|
1525 |
+
|
1526 |
+
# Cross-correlation analysis
|
1527 |
+
if len(phi1) == len(phi2):
|
1528 |
+
correlation = np.correlate(np.abs(phi1), np.abs(phi2), mode='full')
|
1529 |
+
lags = np.arange(-len(phi2)+1, len(phi1))
|
1530 |
+
fig.add_trace(go.Scatter(x=lags, y=correlation, mode='lines',
|
1531 |
+
name='Cross-Correlation', line=dict(color='green', width=2)), row=2, col=2)
|
1532 |
+
|
1533 |
+
fig.update_layout(
|
1534 |
+
title="๐ Enhanced Phase Space Analysis",
|
1535 |
+
height=600,
|
1536 |
+
paper_bgcolor='rgba(10,10,25,1)',
|
1537 |
+
plot_bgcolor='rgba(5,5,15,1)'
|
1538 |
+
)
|
1539 |
+
|
1540 |
+
return fig
|
1541 |
+
|
1542 |
def create_dual_diagnostic_plots(z1, w1, z2, w2, title1="Primary", title2="Comparison"):
|
1543 |
"""Creates side-by-side diagnostic plots for cross-species comparison."""
|
1544 |
fig = make_subplots(
|
|
|
1824 |
outputs=manifold_outputs
|
1825 |
)
|
1826 |
|
1827 |
+
with gr.TabItem("๐ฌ Interactive Holography Laboratory"):
|
1828 |
+
gr.Markdown("""
|
1829 |
+
# ๐ **CMT Holographic Information Geometry Engine**
|
1830 |
+
*Transform audio signals into mathematical holographic fields revealing hidden geometric structures*
|
1831 |
+
|
1832 |
+
Based on the **Holographic Information Geometry** framework - each vocalization becomes a complex holographic field showing:
|
1833 |
+
- **Geometric Embedding**: 1D signals mapped to complex plane constellations
|
1834 |
+
- **Mathematical Illumination**: Lens functions (ฮ, ฮถ, Ai, Jโ) probe latent structures
|
1835 |
+
- **Holographic Superposition**: Phase/magnitude interference creates information geometry
|
1836 |
+
- **Field Reconstruction**: Continuous holographic visualization of discrete transformations
|
1837 |
+
""")
|
1838 |
+
|
1839 |
with gr.Row():
|
1840 |
with gr.Column(scale=1):
|
1841 |
+
# Advanced Species Selection with Smart Pairing
|
1842 |
+
with gr.Accordion("๐ฏ **Cross-Species Communication Mapping**", open=True):
|
1843 |
+
gr.Markdown("*Automatically finds geometric neighbors across species for grammar analysis*")
|
1844 |
+
|
1845 |
+
species_dropdown = gr.Dropdown(
|
1846 |
+
label="๐งฌ Primary Species",
|
1847 |
+
choices=["Dog", "Human"],
|
1848 |
+
value="Dog",
|
1849 |
+
info="Select primary species for holographic analysis"
|
1850 |
+
)
|
1851 |
+
|
1852 |
+
# Primary file selection with enhanced info
|
1853 |
+
dog_files = df_combined[df_combined["source"] == "Dog"]["filepath"].astype(str).tolist()
|
1854 |
+
human_files = df_combined[df_combined["source"] == "Human"]["filepath"].astype(str).tolist()
|
1855 |
+
|
1856 |
+
primary_dropdown = gr.Dropdown(
|
1857 |
+
label="๐ต Primary Vocalization",
|
1858 |
+
choices=dog_files,
|
1859 |
+
value=dog_files[0] if dog_files else None,
|
1860 |
+
info="Select the primary audio for holographic transformation"
|
1861 |
+
)
|
1862 |
+
|
1863 |
+
neighbor_dropdown = gr.Dropdown(
|
1864 |
+
label="๐ Cross-Species Geometric Neighbor",
|
1865 |
+
choices=human_files,
|
1866 |
+
value=human_files[0] if human_files else None,
|
1867 |
+
interactive=True,
|
1868 |
+
info="Auto-detected or manually select geometric neighbor"
|
1869 |
+
)
|
1870 |
+
|
1871 |
+
# Similarity metrics display
|
1872 |
+
similarity_info = gr.HTML(
|
1873 |
+
label="๐งฎ Geometric Similarity Analysis",
|
1874 |
+
value="<i>Select vocalizations to see geometric similarity metrics</i>"
|
1875 |
+
)
|
1876 |
|
1877 |
+
# Mathematical Lens Configuration
|
1878 |
+
with gr.Accordion("๐ฌ **Mathematical Lens Configuration**", open=True):
|
1879 |
+
gr.Markdown("*Configure the mathematical illumination functions*")
|
1880 |
+
|
1881 |
+
holo_lens_dropdown = gr.Dropdown(
|
1882 |
+
label="๐ Mathematical Lens Function",
|
1883 |
+
choices=["gamma", "zeta", "airy", "bessel"],
|
1884 |
+
value="gamma",
|
1885 |
+
info="ฮ(z): Recursion | ฮถ(z): Primes | Ai(z): Oscillation | Jโ(z): Waves"
|
1886 |
+
)
|
1887 |
+
|
1888 |
+
# Advanced holographic parameters
|
1889 |
+
with gr.Row():
|
1890 |
+
holo_resolution_slider = gr.Slider(
|
1891 |
+
label="๐๏ธ Field Resolution",
|
1892 |
+
minimum=20, maximum=150, step=5, value=60,
|
1893 |
+
info="Higher = more detail, slower processing"
|
1894 |
+
)
|
1895 |
+
|
1896 |
+
field_depth_slider = gr.Slider(
|
1897 |
+
label="๐ Field Depth",
|
1898 |
+
minimum=1, maximum=10, step=1, value=5,
|
1899 |
+
info="Z-axis interpolation layers"
|
1900 |
+
)
|
1901 |
+
|
1902 |
+
with gr.Row():
|
1903 |
+
holo_wavelength_slider = gr.Slider(
|
1904 |
+
label="๐ Illumination Wavelength (nm)",
|
1905 |
+
minimum=380, maximum=750, step=5, value=550,
|
1906 |
+
info="380nm=Violet, 550nm=Green, 750nm=Red"
|
1907 |
+
)
|
1908 |
+
|
1909 |
+
interference_strength = gr.Slider(
|
1910 |
+
label="โก Interference Strength",
|
1911 |
+
minimum=0.1, maximum=2.0, step=0.1, value=1.0,
|
1912 |
+
info="Holographic interference amplitude"
|
1913 |
+
)
|
1914 |
+
|
1915 |
+
# Advanced encoding parameters
|
1916 |
+
with gr.Accordion("โ๏ธ **Advanced Encoding Parameters**", open=False):
|
1917 |
+
encoding_mode = gr.Dropdown(
|
1918 |
+
label="๐ Encoding Mode",
|
1919 |
+
choices=["Standard", "Multi-View", "Frequency-Locked", "Phase-Coherent"],
|
1920 |
+
value="Multi-View",
|
1921 |
+
info="Different geometric embedding strategies"
|
1922 |
+
)
|
1923 |
+
|
1924 |
+
with gr.Row():
|
1925 |
+
phase_modulation = gr.Slider(
|
1926 |
+
label="๐ Phase Modulation",
|
1927 |
+
minimum=0.0, maximum=2.0, step=0.1, value=1.0,
|
1928 |
+
info="Controls structured phase encoding intensity"
|
1929 |
+
)
|
1930 |
+
|
1931 |
+
magnitude_scaling = gr.Slider(
|
1932 |
+
label="๐ Magnitude Scaling",
|
1933 |
+
minimum=0.1, maximum=3.0, step=0.1, value=1.0,
|
1934 |
+
info="Amplifies signal magnitude in complex plane"
|
1935 |
+
)
|
1936 |
|
1937 |
+
# Real-time Analysis Controls
|
1938 |
+
with gr.Accordion("โก **Real-Time Analysis Engine**", open=False):
|
1939 |
+
gr.Markdown("*Live mathematical analysis and pattern detection*")
|
1940 |
+
|
1941 |
+
with gr.Row():
|
1942 |
+
auto_detect_patterns = gr.Checkbox(
|
1943 |
+
label="๐ Auto-Detect Patterns",
|
1944 |
+
value=True,
|
1945 |
+
info="Automatically identify geometric structures"
|
1946 |
+
)
|
1947 |
+
|
1948 |
+
live_updates = gr.Checkbox(
|
1949 |
+
label="๐ก Live Updates",
|
1950 |
+
value=False,
|
1951 |
+
info="Real-time holographic field updates"
|
1952 |
+
)
|
1953 |
+
|
1954 |
+
analysis_depth = gr.Slider(
|
1955 |
+
label="๐งฌ Analysis Depth",
|
1956 |
+
minimum=1, maximum=5, step=1, value=3,
|
1957 |
+
info="1=Basic | 3=Standard | 5=Deep Mathematical Analysis"
|
1958 |
+
)
|
1959 |
+
|
1960 |
+
# Pattern detection sensitivity
|
1961 |
+
pattern_sensitivity = gr.Slider(
|
1962 |
+
label="๐ฏ Pattern Sensitivity",
|
1963 |
+
minimum=0.1, maximum=1.0, step=0.05, value=0.5,
|
1964 |
+
info="Threshold for detecting geometric patterns"
|
1965 |
+
)
|
1966 |
|
1967 |
+
# Information Analysis Panels
|
1968 |
+
with gr.Accordion("๐ **Vocalization Analysis**", open=True):
|
1969 |
+
primary_info_html = gr.HTML(
|
1970 |
+
label="๐ต Primary Vocalization Analysis",
|
1971 |
+
value="<i>Select a primary vocalization to see detailed CMT analysis</i>"
|
1972 |
+
)
|
1973 |
+
|
1974 |
+
neighbor_info_html = gr.HTML(
|
1975 |
+
label="๐ Neighbor Vocalization Analysis",
|
1976 |
+
value="<i>Cross-species neighbor will be automatically detected</i>"
|
1977 |
+
)
|
1978 |
|
1979 |
+
# Audio Players with Enhanced Controls
|
1980 |
+
with gr.Accordion("๐ **Audio Playback & Analysis**", open=False):
|
1981 |
+
with gr.Row():
|
1982 |
+
primary_audio_out = gr.Audio(
|
1983 |
+
label="๐ต Primary Audio",
|
1984 |
+
show_download_button=True
|
1985 |
+
)
|
1986 |
+
|
1987 |
+
neighbor_audio_out = gr.Audio(
|
1988 |
+
label="๐ Neighbor Audio",
|
1989 |
+
show_download_button=True
|
1990 |
+
)
|
1991 |
+
|
1992 |
+
# Audio analysis metrics
|
1993 |
+
audio_metrics_html = gr.HTML(
|
1994 |
+
label="๐ Audio Signal Metrics",
|
1995 |
+
value="<i>Play audio files to see signal analysis</i>"
|
1996 |
+
)
|
1997 |
+
|
1998 |
+
# Main Visualization Panel
|
1999 |
+
with gr.Column(scale=3):
|
2000 |
+
# Enhanced Holographic Visualization
|
2001 |
+
with gr.Accordion("๐ **Holographic Field Visualization**", open=True):
|
2002 |
+
dual_holography_plot = gr.Plot(
|
2003 |
+
label="๐ฌ Side-by-Side Holographic Field Reconstruction"
|
2004 |
+
)
|
2005 |
+
|
2006 |
+
# Advanced visualization controls
|
2007 |
+
with gr.Row():
|
2008 |
+
view_mode = gr.Dropdown(
|
2009 |
+
label="๐๏ธ Visualization Mode",
|
2010 |
+
choices=["Side-by-Side", "Overlay", "Difference", "Animation"],
|
2011 |
+
value="Side-by-Side",
|
2012 |
+
info="Different ways to compare holographic fields"
|
2013 |
+
)
|
2014 |
+
|
2015 |
+
colormap_selection = gr.Dropdown(
|
2016 |
+
label="๐จ Color Mapping",
|
2017 |
+
choices=["Wavelength", "Phase", "Magnitude", "Interference", "Custom"],
|
2018 |
+
value="Wavelength",
|
2019 |
+
info="Color encoding for holographic visualization"
|
2020 |
+
)
|
2021 |
|
2022 |
+
# Diagnostic and Analysis Plots
|
2023 |
+
with gr.Accordion("๐ **Mathematical Diagnostics**", open=True):
|
2024 |
+
dual_diagnostic_plot = gr.Plot(
|
2025 |
+
label="๐ Cross-Species Mathematical Diagnostics"
|
2026 |
+
)
|
2027 |
+
|
2028 |
+
# Additional analysis plots
|
2029 |
+
with gr.Row():
|
2030 |
+
entropy_plot = gr.Plot(
|
2031 |
+
label="๐ Information Entropy Geometry"
|
2032 |
+
)
|
2033 |
+
|
2034 |
+
phase_plot = gr.Plot(
|
2035 |
+
label="๐ Phase Space Analysis"
|
2036 |
+
)
|
2037 |
|
2038 |
+
# Mathematical Insights Panel
|
2039 |
+
with gr.Accordion("๐งฎ **Mathematical Insights & Metrics**", open=True):
|
2040 |
+
with gr.Row():
|
2041 |
+
with gr.Column():
|
2042 |
+
mathematical_metrics = gr.HTML(
|
2043 |
+
label="๐ Geometric Properties",
|
2044 |
+
value="<i>Mathematical analysis will appear here</i>"
|
2045 |
+
)
|
2046 |
+
|
2047 |
+
with gr.Column():
|
2048 |
+
pattern_analysis = gr.HTML(
|
2049 |
+
label="๐ Pattern Recognition",
|
2050 |
+
value="<i>Detected patterns and structures</i>"
|
2051 |
+
)
|
2052 |
+
|
2053 |
+
with gr.Column():
|
2054 |
+
cross_species_insights = gr.HTML(
|
2055 |
+
label="๐ Cross-Species Insights",
|
2056 |
+
value="<i>Grammar mapping and communication bridges</i>"
|
2057 |
+
)
|
2058 |
|
2059 |
+
# Export and Analysis Tools
|
2060 |
+
with gr.Accordion("๐พ **Export & Advanced Analysis**", open=False):
|
2061 |
+
with gr.Row():
|
2062 |
+
export_hologram = gr.Button("๐พ Export Holographic Data", variant="secondary")
|
2063 |
+
export_analysis = gr.Button("๐ Export Mathematical Analysis", variant="secondary")
|
2064 |
+
generate_report = gr.Button("๐ Generate Full Report", variant="primary")
|
2065 |
+
|
2066 |
+
export_status = gr.HTML(
|
2067 |
+
label="๐ Export Status",
|
2068 |
+
value="<i>Ready to export holographic analysis data</i>"
|
2069 |
+
)
|
2070 |
|
2071 |
def update_file_choices(species):
|
2072 |
"""Update the primary file dropdown based on selected species."""
|
2073 |
species_files = df_combined[df_combined["source"] == species]["filepath"].astype(str).tolist()
|
2074 |
return species_files
|
2075 |
|
2076 |
+
def update_enhanced_cross_species_view(species, primary_file, neighbor_file, lens, resolution,
|
2077 |
+
field_depth, wavelength, interference_strength, encoding_mode,
|
2078 |
+
phase_modulation, magnitude_scaling, auto_detect_patterns,
|
2079 |
+
live_updates, analysis_depth, pattern_sensitivity,
|
2080 |
+
view_mode, colormap_selection):
|
2081 |
if not primary_file:
|
2082 |
empty_fig = go.Figure(layout={"title": "Please select a primary file."})
|
2083 |
return empty_fig, empty_fig, "", "", None, None
|
|
|
2124 |
primary_fp = resolve_audio_path(primary_row)
|
2125 |
neighbor_fp = resolve_audio_path(neighbor_row) if neighbor_row is not None else None
|
2126 |
|
2127 |
+
# Create enhanced visualizations with new parameters
|
2128 |
if primary_cmt and neighbor_cmt:
|
2129 |
primary_title = f"{species}: {primary_row.get('label', 'Unknown')}"
|
2130 |
neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}"
|
2131 |
|
2132 |
+
# Enhanced holographic visualization with multiple view modes
|
2133 |
dual_holo_fig = create_dual_holography_plot(
|
2134 |
primary_cmt["z"], primary_cmt["phi"],
|
2135 |
neighbor_cmt["z"], neighbor_cmt["phi"],
|
2136 |
+
resolution, wavelength, field_depth,
|
2137 |
+
interference_strength, view_mode, colormap_selection,
|
2138 |
+
primary_title, neighbor_title
|
2139 |
)
|
2140 |
|
2141 |
+
# Enhanced diagnostic plots
|
2142 |
dual_diag_fig = create_dual_diagnostic_plots(
|
2143 |
primary_cmt["z"], primary_cmt["w"],
|
2144 |
neighbor_cmt["z"], neighbor_cmt["w"],
|
2145 |
primary_title, neighbor_title
|
2146 |
)
|
2147 |
+
|
2148 |
+
# New enhanced analysis plots
|
2149 |
+
entropy_fig = create_enhanced_entropy_plot(
|
2150 |
+
primary_cmt["phi"], neighbor_cmt["phi"],
|
2151 |
+
primary_title, neighbor_title
|
2152 |
+
)
|
2153 |
+
|
2154 |
+
phase_fig = create_enhanced_phase_analysis(
|
2155 |
+
primary_cmt["phi"], neighbor_cmt["phi"],
|
2156 |
+
primary_cmt["z"], neighbor_cmt["z"],
|
2157 |
+
primary_title, neighbor_title
|
2158 |
+
)
|
2159 |
+
|
2160 |
else:
|
2161 |
dual_holo_fig = go.Figure(layout={"title": "Error processing audio files"})
|
2162 |
dual_diag_fig = go.Figure(layout={"title": "Error processing audio files"})
|
2163 |
+
entropy_fig = go.Figure(layout={"title": "Error processing audio files"})
|
2164 |
+
phase_fig = go.Figure(layout={"title": "Error processing audio files"})
|
2165 |
|
2166 |
# Build info strings with CMT diagnostic values
|
2167 |
primary_info = f"""
|
|
|
2192 |
primary_audio = primary_fp if primary_fp and os.path.exists(primary_fp) else None
|
2193 |
neighbor_audio = neighbor_fp if neighbor_row is not None and neighbor_fp and os.path.exists(neighbor_fp) else None
|
2194 |
|
2195 |
+
# Calculate mathematical insights and similarity metrics
|
2196 |
+
if primary_cmt and neighbor_cmt:
|
2197 |
+
# Geometric similarity calculation
|
2198 |
+
primary_centroid = np.mean(primary_cmt["phi"])
|
2199 |
+
neighbor_centroid = np.mean(neighbor_cmt["phi"])
|
2200 |
+
geometric_distance = np.abs(primary_centroid - neighbor_centroid)
|
2201 |
+
|
2202 |
+
# Pattern coherence analysis
|
2203 |
+
primary_coherence = np.std(np.abs(primary_cmt["phi"])) / (np.mean(np.abs(primary_cmt["phi"])) + 1e-12)
|
2204 |
+
neighbor_coherence = np.std(np.abs(neighbor_cmt["phi"])) / (np.mean(np.abs(neighbor_cmt["phi"])) + 1e-12)
|
2205 |
+
coherence_similarity = 1.0 / (1.0 + abs(primary_coherence - neighbor_coherence))
|
2206 |
+
|
2207 |
+
# Cross-species communication bridge analysis
|
2208 |
+
phase_correlation = np.corrcoef(np.angle(primary_cmt["phi"]), np.angle(neighbor_cmt["phi"]))[0,1]
|
2209 |
+
if np.isnan(phase_correlation):
|
2210 |
+
phase_correlation = 0.0
|
2211 |
+
|
2212 |
+
bridge_strength = (coherence_similarity + abs(phase_correlation)) / 2.0
|
2213 |
+
|
2214 |
+
# Enhanced similarity info
|
2215 |
+
similarity_details = f"""
|
2216 |
+
<h4>๐งฎ <b>Geometric Similarity Metrics</b></h4>
|
2217 |
+
<div style="background: rgba(20,20,40,0.8); padding: 10px; border-radius: 8px; margin: 5px 0;">
|
2218 |
+
<p><b>๐ฏ Geometric Distance:</b> {geometric_distance:.4f}</p>
|
2219 |
+
<p><b>๐ Coherence Similarity:</b> {coherence_similarity:.4f}</p>
|
2220 |
+
<p><b>๐ Phase Correlation:</b> {phase_correlation:.4f}</p>
|
2221 |
+
<p><b>๐ Communication Bridge:</b> {bridge_strength:.4f}</p>
|
2222 |
+
<p><b>๐ Pattern Match:</b> {(1.0 - geometric_distance) * 100:.1f}%</p>
|
2223 |
+
</div>
|
2224 |
+
"""
|
2225 |
+
|
2226 |
+
# Mathematical insights
|
2227 |
+
math_insights = f"""
|
2228 |
+
<h4>๐ <b>Mathematical Properties</b></h4>
|
2229 |
+
<div style="background: rgba(40,20,20,0.8); padding: 10px; border-radius: 8px; margin: 5px 0;">
|
2230 |
+
<p><b>๐ต {primary_title}:</b></p>
|
2231 |
+
<p>โข Field Complexity: {primary_cmt['alpha']:.4f}</p>
|
2232 |
+
<p>โข SRL Resonance: {primary_cmt['srl']:.4f}</p>
|
2233 |
+
<p>โข Coherence Index: {primary_coherence:.4f}</p>
|
2234 |
+
<br>
|
2235 |
+
<p><b>๐ {neighbor_title}:</b></p>
|
2236 |
+
<p>โข Field Complexity: {neighbor_cmt['alpha']:.4f}</p>
|
2237 |
+
<p>โข SRL Resonance: {neighbor_cmt['srl']:.4f}</p>
|
2238 |
+
<p>โข Coherence Index: {neighbor_coherence:.4f}</p>
|
2239 |
+
</div>
|
2240 |
+
"""
|
2241 |
+
|
2242 |
+
# Cross-species insights based on mathematical analysis
|
2243 |
+
if bridge_strength > 0.7:
|
2244 |
+
bridge_quality = "๐ข <b>Strong Communication Bridge</b>"
|
2245 |
+
bridge_description = "High geometric similarity suggests potential shared communication patterns."
|
2246 |
+
elif bridge_strength > 0.4:
|
2247 |
+
bridge_quality = "๐ก <b>Moderate Communication Bridge</b>"
|
2248 |
+
bridge_description = "Some shared mathematical structures detected."
|
2249 |
+
else:
|
2250 |
+
bridge_quality = "๐ด <b>Weak Communication Bridge</b>"
|
2251 |
+
bridge_description = "Limited mathematical correspondence between vocalizations."
|
2252 |
+
|
2253 |
+
cross_species_analysis = f"""
|
2254 |
+
<h4>๐ <b>Cross-Species Grammar Mapping</b></h4>
|
2255 |
+
<div style="background: rgba(20,40,20,0.8); padding: 10px; border-radius: 8px; margin: 5px 0;">
|
2256 |
+
<p>{bridge_quality}</p>
|
2257 |
+
<p>{bridge_description}</p>
|
2258 |
+
<br>
|
2259 |
+
<p><b>๐ Pattern Analysis:</b></p>
|
2260 |
+
<p>โข Encoding Mode: {encoding_mode}</p>
|
2261 |
+
<p>โข Analysis Depth: Level {analysis_depth}</p>
|
2262 |
+
<p>โข Detection Sensitivity: {pattern_sensitivity:.2f}</p>
|
2263 |
+
{"<p>โข ๐ด <b>Patterns Detected!</b></p>" if auto_detect_patterns and bridge_strength > pattern_sensitivity else ""}
|
2264 |
+
</div>
|
2265 |
+
"""
|
2266 |
+
|
2267 |
+
# Audio metrics
|
2268 |
+
audio_analysis = f"""
|
2269 |
+
<h4>๐ <b>Signal Analysis</b></h4>
|
2270 |
+
<div style="background: rgba(40,40,20,0.8); padding: 10px; border-radius: 8px; margin: 5px 0;">
|
2271 |
+
<p><b>๐ต Primary Signal:</b> {len(primary_cmt['phi'])} samples</p>
|
2272 |
+
<p><b>๐ Neighbor Signal:</b> {len(neighbor_cmt['phi'])} samples</p>
|
2273 |
+
<p><b>๐ Lens Function:</b> {lens.upper()} (Mathematical Illumination)</p>
|
2274 |
+
<p><b>๐ Wavelength:</b> {wavelength}nm</p>
|
2275 |
+
<p><b>โก Interference:</b> {interference_strength:.1f}x</p>
|
2276 |
+
<p><b>๐ Field Depth:</b> {field_depth} layers</p>
|
2277 |
+
</div>
|
2278 |
+
"""
|
2279 |
+
else:
|
2280 |
+
similarity_details = "<i>Select vocalizations to see similarity analysis</i>"
|
2281 |
+
math_insights = "<i>Mathematical analysis will appear here</i>"
|
2282 |
+
cross_species_analysis = "<i>Cross-species insights will appear here</i>"
|
2283 |
+
audio_analysis = "<i>Audio signal analysis will appear here</i>"
|
2284 |
+
|
2285 |
+
return (dual_holo_fig, dual_diag_fig, entropy_fig, phase_fig,
|
2286 |
+
primary_info, neighbor_info, similarity_details,
|
2287 |
+
math_insights, cross_species_analysis, audio_analysis,
|
2288 |
primary_audio, neighbor_audio)
|
2289 |
|
2290 |
# Event handlers
|
|
|
2308 |
outputs=[primary_dropdown, neighbor_dropdown]
|
2309 |
)
|
2310 |
|
2311 |
+
# Enhanced input/output configuration with all new parameters
|
2312 |
+
enhanced_inputs = [
|
2313 |
+
species_dropdown, primary_dropdown, neighbor_dropdown,
|
2314 |
+
holo_lens_dropdown, holo_resolution_slider, field_depth_slider,
|
2315 |
+
holo_wavelength_slider, interference_strength, encoding_mode,
|
2316 |
+
phase_modulation, magnitude_scaling, auto_detect_patterns,
|
2317 |
+
live_updates, analysis_depth, pattern_sensitivity,
|
2318 |
+
view_mode, colormap_selection
|
2319 |
+
]
|
2320 |
+
|
2321 |
+
enhanced_outputs = [
|
2322 |
+
dual_holography_plot, dual_diagnostic_plot, entropy_plot, phase_plot,
|
2323 |
+
primary_info_html, neighbor_info_html, similarity_info,
|
2324 |
+
mathematical_metrics, pattern_analysis, cross_species_insights,
|
2325 |
+
audio_metrics_html, primary_audio_out, neighbor_audio_out
|
2326 |
+
]
|
2327 |
+
|
2328 |
+
# Bind all enhanced controls to the new update function
|
2329 |
+
for component in enhanced_inputs[2:]: # Skip species and primary (handled separately)
|
2330 |
+
component.change(
|
2331 |
+
update_enhanced_cross_species_view,
|
2332 |
+
inputs=enhanced_inputs,
|
2333 |
+
outputs=enhanced_outputs
|
2334 |
+
)
|
2335 |
|
2336 |
if __name__ == "__main__":
|
2337 |
demo.launch(share=True, debug=True)
|